Physics, asked by kishorenithiya4456, 2 months ago

Calculate the energy of the Moon orbiting the Earth (Here mass of Earth 6.02×1024 kg;

mass of Moon 7.35 ×1022 kg; and distance between the Moon and the center of the

Earth 3.84 ×105

km)​

Answers

Answered by mauryavijay8088
1

Explanation:

Given that,

Mass of the Earth m

1

=6×10

24

Kg

Mass of the Moon m

2

=7.4×10

22

kg

Distance between the Earth and the Moon d=3.84×10

5

km=3.84×10

8

m

Gravitational Constant G=6.7×10

−11

Nm

2

/kg

2

Now, by using Newton’s law of gravitation

F=

r

2

Gm

1

m

2

F=

(3.84×10

8

)

2

6.7×10

−11

×6×10

24

×7.4×10

22

F=

14.8225×10

16

297.48×10

35

F=20.069×10

19

F=20.1×10

19

N

Hence, the gravitational force of attraction is 20.1×10

19

N

Answered by krishnachaitanya48
0

Answer:

Gravitational constant G=6.67×1011Nm2kg−2G=6.67×1011Nm2kg-2

Mass of the Monn Mm=7.35×1022Mm=7.35×1022 kg

Mass of the Sun M5=2×1030kgM5=2×1030kg

The distance between the Moon and the centre of the Earth

Rm3.84×106kmRm3.84×106km

The distance between the Earth and the centre of the sun

Re=150×106kmRe=150×106km

(i) The energy of the Moon orbating the Earth

Em=−GMEMm2RmEm=-GMEMm2Rm

=−6.67×1011×6.02×1024×7.35×10222×3.84×105×103=-6.67×1011×6.02×1024×7.35×10222×3.84×105×103

=−295.12757.68×10−9×1046=-295.12757.68×10-9×1046

Em=−38.42×1027Em=-38.42×1027 Joule

Explanation:

pls mark me as brainliest

Similar questions