Chemistry, asked by cbnayana, 9 hours ago

calculate the enthalpy change for the reaction C + O2 ---> CO2 Given that energy required for sublimation of one mole of carbon is 716.7kJ. Also the energy required to break one mole of O=O & C=O BONDS IS 494 kJ and 707kJ respectively. (please explain every step, I'm reporting irrelevant answers :D)​

Answers

Answered by GlimmeryEyes
2

Answer:

Your answer is in the above attachment.

Attachments:
Answered by ItzRoyalQueen01
2

Answer:

a Hess' law discussion and then solve example #1 again.

However, there is a difficulty: we wind up with a Hess' Law formulation that is slightly different than we use when we manipulate chemical equations with their associated enthalpies.

One final note before solving some problems: the ΔH values determined via this technique are only approximations. This is because the bond enthalpy values used are averages. Bond enthalpies actually differ slightly from substance to substance.

Here is what I mean: take a carbon-carbon single bond (C−C).

Example #4 has a little trick in it. Just so you know!

Example #1: Hydrogenation of double and triple bonds is an important industrial process. Calculate (in kJ) the standard enthalpy change ΔH for the hydrogenation of ethyne (acetylene) to ethane:

H−C≡C−H(g) + 2H2(g) ---> H3C−CH3(g)

Bond enthalpies (in kJ/mol): C−C (347); C≡C (839); C−H (413); H−H (432)

Solution:

1) You have to put energy into a bond (any bond) to break it. Bond breaking is endothermic. Let's break all the bonds of the reactants:

one C≡C ⇒ +839 kJ

two C−H ⇒ 413 x 2 = +826 kJ

two H−H ⇒ 432 x 2 = +864 kJ

The sum is +2529 kJ

Note there are two C−H bonds in one molecule of C2H2 and there is one H−H bond in each of two H2 molecules. Two different types of reasons for multiplying by two.

2) You get energy out when a bond (any bond) forms. Bond making is exothermic. Let's make all the bonds of the one product:

one C−C ⇒ −347 kJ

six C−H ⇒ −413 x 6 = −2478

The sum is −2826 kJ

3) ΔH = the energies required to break bonds (positive sign) + the energies required to make bonds (negative sign):

+2529 + (−2825) = −296 kJ/mol

In step 3 just above, I wrote the ΔH calculation in the form of Hess' Law, but with words. Let's try some symbols:

ΔH = Σ Ebonds broken + Σ Ebonds formed

I'm using E to represent the bond energy per mole of bonds (for example, E for the C≡C bond is 839 kJ/mol). Also, a reminder:

Σ Ebonds broken ⇒ always a positive value

Σ Ebonds formed ⇒ always a negative value

Now, I want to rearrange the negative sign on the second value in step three above. Here is what I wrote above:

+2529 + (−2825) = −296 kJ/mol

and in writing the Hess' law formulation, I want to do this:

+2529 − (+2825) = −296 kJ/mol

Here is how it affects the Hess' Law formulation :

Example #1 (again):

H−C≡C−H(g) + 2H2(g) ---> H3C−CH3(g)

Bond enthalpies (in kJ/mol): C−C (347); C≡C (839); C−H (413); H−H (432)

Solution:

1) Hess' Law for bond enthalpies is:

ΔH = Σ Ereactant bonds broken − Σ Eproduct bonds broken

2) On the reactant side, we have these bonds broken:

Σ [two C−H bonds + one C≡C bond + two H−H bonds]

Σ [(2 x 413) + 839 + (2 x 432)] = 2529 kJ

3) On the product side, we have these bonds broken:

Σ [one C−C bond + six C−H bonds]

Σ [347 + (6 x 413)] = 2825 kJ

4) Using Hess' Law, we have:

ΔH = 2529 − 2825 = −296 kJ

Example #2: Using bond enthalpies, calculate the reaction enthalpy (ΔH) for:

CH4(g) + Cl2(g) ---> CH3Cl(g) + HCl(g)

Bond enthalpies (in kJ/mol): C−H (413); Cl−Cl (239); C−Cl (339); H−Cl (427)

Solution:

1) Hess' Law for bond enthalpies is:

ΔH = Σ Ereactant bonds broken − Σ Eproduct bonds broken

2) On the reactant side, we have these bonds broken:

Σ [four C−H bonds + one Cl−Cl bond]

Σ [(4 x 413) + 239] = 1891 kJ

3) On the product side, we have these bonds broken:

Σ [three C−H bonds + one C−Cl bond + one H−Cl bond]

Σ [(3 x 413) + 339 + 427] = 2005 kJ

4) Using Hess' Law, we have:

ΔH = 1891 − 2005 = −114 kJ

reactant side: [one C−H bond + one Cl−Cl bond] = 413 + 239 = 652

product side: [one C−Cl bond + one H−Cl bond] = 339 + 427 = 766

ΔH = 652 − 766 = −114 kJ

Example #3: What is the enthalpy of reaction for the following equation:

2CH3OH(ℓ) + 3O2(g) ---> 2CO2(g) + 4H2O(g)

Similar questions