Physics, asked by mahto2610, 2 months ago

Calculate the equivalent resistance between points A and B

CLASS 10th​

Attachments:

Answers

Answered by MrImpeccable
27

ANSWER:

Given:

  • \sf R_1=2\Omega
  • \sf R_2=4\Omega
  • \sf R_3=6\Omega
  • \sf R_4=7\Omega
  • \sf R_5=10\Omega

To Find:

  • Equivalent Resistance between A and B

Procedure:

  • First we'll find Equivalent resistance of \sf R_1 and \sf R_2.
  • Then, we'll find the equivalent resistance of \sf R_3 and that of \sf R_1 and \sf R_2.
  • After that, we'll find the equivalent resistance of the above equivalent resistance and \sf R_4
  • Finally, we will find the Equivalent resistance of the above one and \sf R_5

Solution:

(Refer Attachment 1)

We are given that,

:\implies\sf R_1=2\Omega,\:R_2=4\Omega,\:R_3=6\Omega,\:R_4=7\Omega,\:R_5=10\Omega

\\

(Refer Attachment 1)

We can see that,

:\implies\sf R_1\:\&\:R_2\xrightarrow{Connected\:in} Series\:Combination

We know that, for a Series Combination:

:\hookrightarrow\sf R_{eq}=R_1+R_2+. . . .+R_n

So,

:\implies\sf R_{eq}^1=R_1+R_2

Here, \sf R_{eq}^1, is the equivalent resistance of \sf R_1 and \sf R_2. (1 in \sf R_{eq}^1 is just for notation)

As, \sf R_1=2\Omega\:\&\:R_2=4\Omega,

Hence,

:\implies\sf R_{eq}^1=2+4

:\implies\sf R_{eq}^1=6\Omega - - - -(1)

\\

(Refer Attachment 2)

Now, we can see that,

:\implies\sf R_{eq}^1\:\&\:R_3\xrightarrow{Connected\:in} Parallel\:Combination

We know that, for a Parallel Combination:

:\hookrightarrow\sf \dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+. . . .+\dfrac{1}{R_n}

So,

:\implies\sf \dfrac{1}{R_{eq}^2}=\dfrac{1}{R_{eq}^1}+\dfrac{1}{R_3}

Here, \sf R_{eq}^2, is the equivalent resistance of \sf R_{eq}^1 and \sf R_3. (2 in \sf R_{eq}^2 is just for notation)

Using (1),

As, \sf R_{eq}^1=6\Omega\:\&\:R_3=6\Omega,

Hence,

:\implies\sf \dfrac{1}{R_{eq}^2}=\dfrac{1}{6}+\dfrac{1}{6}

:\implies\sf \dfrac{1}{R_{eq}^2}=\dfrac{2\!\!\!/}{6\!\!\!/_{\:3}}

:\implies\sf \dfrac{1}{R_{eq}^2}=\dfrac{1}{3}

:\implies\sf R_{eq}^2=3\Omega - - - -(2)

\\

(Refer Attachment 3)

We can see that,

:\implies\sf R_{eq}^2\:\&\:R_4\xrightarrow{Connected\:in} Series\:Combination

We know that, for a Series Combination:

:\hookrightarrow\sf R_{eq}=R_1+R_2+. . . .+R_n

So,

:\implies\sf R_{eq}^3=R_{eq}^2+R_4

Here, \sf R_{eq}^3, is the equivalent resistance of \sf R_{eq}^2 and \sf R_4. (3 in \sf R_{eq}^3 is just for notation)

Using (2),

As, \sf R_{eq}^2=3\Omega\:\&\:R_4=7\Omega,

Hence,

:\implies\sf R_{eq}^3=3+7

:\implies\sf R_{eq}^3=10\Omega - - - -(3)

\\

(Refer Attachment 4)

Now, we can see that,

:\implies\sf R_{eq}^3\:\&\:R_5\xrightarrow{Connected\:in} Parallel\:Combination

We know that, for a Parallel Combination:

:\hookrightarrow\sf \dfrac{1}{R_{eq}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+. . . .+\dfrac{1}{R_n}

So,

:\implies\sf \dfrac{1}{R_{eq}}=\dfrac{1}{R_{eq}^3}+\dfrac{1}{R_5}

Here, \sf R_{eq}, is the equivalent resistance of \sf R_{eq}^3 and \sf R_5.

Using (3),

As, \sf R_{eq}^3=10\Omega\:\&\:R_5=10\Omega,

Hence,

:\implies\sf \dfrac{1}{R_{eq}}=\dfrac{1}{10}+\dfrac{1}{10}

:\implies\sf \dfrac{1}{R_{eq}}=\dfrac{2\!\!\!/}{10\!\!\!\!\!/_{\:\:5}}

:\implies\sf \dfrac{1}{R_{eq}}=\dfrac{1}{5}

:\implies\bf{R_{eq}=5\Omega}

\\

Hence, the Total Equivalent Resistance between A and B is 5 \bf{\Omega}.

Attachments:
Similar questions