Physics, asked by kashakjain67, 8 months ago

calculate the equivalent resistance in both parallel and series 6ohm,12 ohm,18 ohm ​

Answers

Answered by harman96085
0

Explanation:

parallel 6+12+18=36/2=18

series = 6+12+18=36

Answered by hipsterizedoll410
1

Answer: 36Ω in series and 11/36Ω in parallel.

Given:

\sf Resistor\:1(R_1)=6\Omega

\sf Resistor\:2(R_2)=12\Omega

\sf Resistor\:3(R_3)=18\Omega

To find:

\sf\text{Equivalent resistance in both series and parallel.}

Explanation:

\sf\underline{\textbf{Equivalent Resistance in Series:}}

\sf\text{We know that,}

\boxed{\sf R_{eq(series)} = R_1+R_2+R_3+...}

\sf\text{Substituting the values in the above formula, we get:}

\sf R_{eq(series)} = 6\Omega+12\Omega+18\Omega.

\boxed{\sf R_{eq(series)} = {36\Omega}}

\sf\underline{\textbf{Equivalent Resistance in Parallel:}}

\sf\text{We know that,}

\boxed{\sf R_{eq(parallel)} = \frac{1}{R_1} +\frac{1}{R_2} +\frac{1}{R_3} +...}

\sf\text{Substituting the values in the above formula, we get:}

\large\text{$\sf R_{eq(parallel)} = \frac{1}{6\Omega} +\frac{1}{12\Omega} +\frac{1}{18\Omega}$}

\large\text{$\sf R_{eq(parallel)} = \frac{6+3+2}{36}$}

\boxed{\text{$\sf R_{eq(parallel)} = \frac{11}{36}\Omega$}}

\sf\text{Therefore, equivalent resistance in} \:series\: is\: 36 \Omega\:and\: \frac{11}{36}\Omega\: in\: parallel.

Similar questions