Physics, asked by it07790, 23 days ago

calculate the extension in length of a steel wire of length 1 m and is 0.56 mm diameter loaded by 10kg weight (young's modules of elasticity =2×10^11 N/m^2)​

Answers

Answered by harisreeps
1

Answer:

A steel wire of length 1 m and is 0.56 mm diameter loaded by 10kg weight (young's modulus of elasticity =2×10^11 N/m^2). The extended length will be  19.8944 \times 10^{-4} m

Explanation:

We have the expression for Youg's modulus(Y) as,

Y=\frac{F L}{A l}

Where

F - The stretching force or tension on the wire.

L -  Initial length of the wire

A - Area

 l -  Extended length

Given,

load (m) = 10kg

g = 9.8 m/s^{2}

F=  ma  = 10 \times 9.8 = 98N

L = 1 m

Y = 2\times10^{11} } \ N/m^{2}

Diameter (d)  = 0.56mm = 5.6 \times 10^{-4} m

Radius (r)  = \frac{d}{2}  = 2.8\times 10^{-4} m

Thus,   A = \pi r^{2}  = 3.14\times( 2.8\times10^{-4})^{2} = 2.4630 \times 10^{-7} m^{2}

From equation(1),

l=\frac{F L}{A Y}

Substituting the values, then

Equation (1) becomes,

l =\frac{98\times 1}{2.4630\times10^{-7}\times  2\times10^{11} }

  = 19.8944 \times 10^{-4} m

Ans :

Extended length = 19.8944 \times 10^{-4} m

Similar questions