CBSE BOARD X, asked by ranu167171, 8 months ago

Calculate the following
(i) The total surface area area and
(ii) Curved surface area
If height is 21 cm and cylinder of radius 14 cm​

Answers

Answered by MohdZabeeh
32

Answer:

Explanation:

i] Height= 21cm

Radius= 14cm

Total Surface area=

2*22/7*14 [14+21]

=2*22/7*14*35

=2*22*14*5= 3080cm^2 is the answer

ii] Curved surface area=

2*22/7*14*21

= 2*22*2*21= 1848cm^2 is the answer

Hope it helps u:) Mark as brainliest!

Answered by Anonymous
0

\large{\red{\bold{\underline{Given:}}}}

 \sf \: Radius \: of \: the \: cylinder = 14cm \\  \\  \sf \: Height \: of \: cylinder = 21cm

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cylinder \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cylinder

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total \:  surface \:  area = 2\pi r(r + h) \\  \\  \sf \: Curved  \: surface  \: area = 2\pi rh

\large{\red{\underline\bold{{Solution:}}}}

 \sf \: Let \: the \: radius \: of \: the \: cylinder \: be \: r, \\ \sf \: and \: the \: height \: of \: the \: cylinder \: as \: h

\large{\green{\bold{\underline{Then:}}}}

\sf \: (i) \: Total \:  surface  \: area  = 2\pi r(r + h)  \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7}  \times 14(14 + 21) \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7} \times 14(35) \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  \frac{44}{\cancel7}   \times \cancel14 \times 35  \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area = 3080 \:  {cm}^{2}

\large{\pink{\bold{\underline{Now:}}}}

 \sf \: (ii) \: Curved \:  surface \:  area  = 2\pi rh \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 2 \times  \frac{22}{7}  \times 14 \times 21 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area =  2 \times  \frac{22}{\cancel7}  \times \cancel14 \times 21 \\ \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 44 \times 2 \times 21 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 1848 \:  {cm}^{2}

\large{\orange{\bold{\underline{Therefore:}}}}

 \sf \: The \: total \: surface \: area \: of \: cylinder \: is \\ \sf \: 3080 {cm}^{2}  \: and \: curved \: surface \: area \: is \: 1848 {cm}^{2}.

Similar questions