Physics, asked by sachinrao4422, 11 months ago

Calculate the following integral ∫(3x^-7 + x^-1)dx

Answers

Answered by Anonymous
11

Answer:

∫(3x^-7 + x^-1)dx = 3∫x^-7 dx + ∫ x^-1 dx

=> - 3 x^-6 / 6 + x^0 /0 + C

=> - x^(-6)/ 2 + C

Answered by Anonymous
20

Question:

Evaluate:

 \int(3 {x}^{ - 7}  +  {x}^{ - 1}) dx

Answer:

Take

i =  \int(3 {x}^{ - 7}  +  {x}^{ - 1} )dx \\  \\  i = 3 \int \:  {x}^{ - 7} dx +  \int \:  \frac{1}{x} dx  \\  \\ integrate \: w.r.t.x\\  \\ i = 3  \:  \frac{ {x}^{ - 7 + 1} }{ - 7 + 1}  + log |x|  + c \\  \\ i = 3( \frac{ {x}^{ - 6} }{ - 6} ) + log |x|  + c \\  \\ i =   \frac{ - 3}{6}  (\frac{1}{ {x}^{6} } ) + log |x|  + c \\  \\ i =  -  \frac{1}{2 {x}^{6} }  + log |x|  + c

Formulae used:

 \star \int {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1}   + c\\  \\  \star \int \frac{1}{x}  = log |x|   + c

Similar questions