Physics, asked by bhausahebpathade97, 4 months ago

calculate the force between two electric charge and 5uc and -2uc seperated by a distance of 10 cm (1/4 r0=9×10^9Nm2/c2 ​

Answers

Answered by Anonymous
51

Answer :-

Given :-

  • \sf q_1 = 5 \mu C
  • \sf q_2 = -2 \mu C
  • \sf r = 10 cm

To Find :-

  • Force between two electric charge

Solution :-

Converting the units into SI system :-

  • \sf q_1 = 5 \mu C = 5 \times 10^{-6} C
  • \sf q_2 = 2 \mu C = 2 \times 10^{-6} C \: ( \: only \: magnitude \: )
  • \sf r = 10 cm = 0.1 m

Substituting the value in formula and solving :-

\implies\sf F = \dfrac{kq_1q_2}{r^2}

\implies\sf F = \dfrac{ 9 \times 10^9 \times 5 \times 10^{-6} \times 2 \times 10^{-6} }{(0.1)^2}

\implies\sf F = \dfrac{90 \times 10^{-6-6+9}}{1 \times 10^{-2}}

\implies\sf F = \dfrac{90 \times 10^{-3}}{10^{-2}}

\implies\sf F = 90 \times 10^{-3+2}

\implies\sf F = 90 \times 10^{-1}

\implies\sf F = 9

Force of attraction = 9 N

Answered by Anonymous
123

Given :-

\\

  •  {\sf{q_{r}}} = 5μC
  •  {\sf{q_{r}}} = -2μC
  • r = 10cm

\\

To find :-

\\

  • Force between two electric charge.

\\

Solution :-

\\

Converting the units into SI system :

\\

  •  {\sf{q_{r}}}=5μC = {\sf{5~×~{10}^{ - 6}}}C
  •  {\sf{q_{r}}}=2μC = 2~×~{10}^{ - 6}C{\sf{(only \: magnitude)}}
  • r = 10cm =0.1m

\\

Substituting the value :

\large\dag Formula :

\\

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Solving :

\\

:\impliesF =  \large{\bf{\frac{k q_{1} q_{2} }{ {r}^{2} }}}

\\

~~~~~:\impliesF =  \large{\bf{\frac{9  \: \times  \:  {10}^{9}   \: \times \:  5  \: \times \:   {10}^{ - 6}  \: \times \:  2  \: \times  \:  {10}^{ - 6}  }{(0.1 {)}^{2} }}}

\\

~~~~~~~~~~:\impliesF =  \large{\bf{\frac{90 \:  \times  \: 1 {0}^{ -  \: 6  \: -  \: 6  \: +  \: 9} }{1 \:  \times  \: 1 {0 }^{ - 2} }}}

\\

~~~~~~~~~~~~~~~:\impliesF = \large{\bf{ \frac{90 \:  \times  \: 1 {0}^{ - 3} }{1 {0}^{ - 2} } }}

\\

~~~~~~~~~~~~~~~~~~~~:\impliesF = {\bf{90 \:  \times  \: 1 {0}^{ - 3 \:  +  \: 2}}}

\\

~~~~~~~~~~~~~~~~~~~~~~~:\impliesF = {\bf{90 \:  \times  \: 1 {0}^{ - 1} }}

\\

~~~~~~~~~~~~~~~~~~~~~~~~~~~~:\implies\large{\underline{\boxed{\pink{\bf{F~=~9}}}}}

\\

\large\dag Hence,

\\

  • Force of attraction = \underline{\bf{9~N}}\large{\bf\green{✓}}
Similar questions