Physics, asked by sukhman256, 10 months ago

Calculate the force exerted on a body of mass 10kg for 2s ,which raises it's from 3m/s to 15m/s.

Give full solution ......​

Answers

Answered by Anonymous
31

Given :

  • Mass of Body (m) = 10 kg
  • Time (t) = 2 s
  • Initial velocity (u) = 3 m/s
  • Final velocity (v) = 15 m/s

To Find :

  • Force exerted on the body

Solution :

\underbrace{\sf{Acceleration \: of \: Body}} \\ \\ \implies \sf{a \: = \: \dfrac{v \: - \: u}{t}} \\ \\ \implies \sf{a \: = \: \dfrac{15 \: - \: 3}{2}} \\ \\ \implies \sf{a \: = \: \dfrac{12}{2}} \\ \\ \implies \sf{a \: = \: 6}

\therefore Acceleration of the body is 6 m/s²

______________________________

\underbrace{\sf{Force \: Exerted \: on \: body}} \\ \\ \implies \sf{F \: = \: ma} \\ \\ \implies \sf{F \: = \: 10 \: \times \: 6} \\ \\ \implies \sf{F \: = \: 60}

\therefore Force exerted on the body is 60 N

Answered by Brâiñlynêha
29

Given :-

• Initial velocity of a body (u)= 3m/s

• Final velocity (v)= 15m/s

• Time (t)= 2 seconds

• Mass of body (m) =10kg

To find :-

The Force exerted on a body

  • Formula used !

\bigstar{\boxed{\sf{Force = Mass \times Acceleration }}}

\bigstar{\boxed{\sf{Acceleration  =\dfrac{v-u}{t} }}}

\longmapsto\sf Force = m\times a\\ \\ \longmapsto\sf force = m \times \bigg(\dfrac{v-u}{t}\bigg)\\ \\ \longmapsto\sf force = 10\times \bigg(\dfrac{15-3}{2}\bigg)\\ \\ \longmapsto\sf force = 10\times \bigg(\cancel{\dfrac{12}{2}}\bigg)\\ \\\longmapsto\sf force = 10\times 6\\ \\\longmapsto\sf force = 60N

\underline{\textsf{\textbf{\dag\ \ Force\ exerted \ on \ body  = 60\ Newton}}}

Similar questions