Science, asked by aayushsurat6, 6 months ago

calculate the force of gravitation between earth and sun given the mass of Earth is =6.10 kg and sun =2.10 kg . the average distance between the two is =1.5​*10¹¹ m​

Answers

Answered by Anonymous
5

\pink{\overbrace{\underbrace{\sf Given}} :-}

ㅤㅤㅤ• mass of Earth (m1) = 6.10 kg

ㅤㅤㅤ• mass of Sun (m2) = 2.10 kg

ㅤㅤㅤ•ㅤ distance (d) = 1.5 × 10¹¹ m

\pink{\overbrace{\underbrace{\sf To \: Find}}:-}

ㅤ• Calculate the gravitational force

ㅤㅤ between Sun & Earth ?

\pink{\overbrace{\underbrace{\sf Usable \: Formula}}:-}

ㅤㅤㅤㅤㅤ \large \boxed{\sf\red{Fg = \dfrac{G m1 m2}{d^{2}}}}

here ,

ㅤㅤFg = gravitational force

ㅤㅤ G = gravitational constant

ㅤㅤㅤ = \sf{6.67\times 10^{-11} \: \dfrac{Nm^{2}}{kg^{2}}}

ㅤㅤm1 = mass of Earth

ㅤ m2 = mass of Sun

ㅤㅤ d = distance between two's

\pink{\overbrace{\underbrace{\sf Solution}}:-}

\: \: \: \: \: \: \: \: \sf{Fg = \dfrac{6.67\times 10^{-11}\times 6.10\times 2.10}{(1.5\times 10^{11})^{2}}}

\: \: \: \: \: \: \: \: \sf{Fg = \dfrac{6.67\times 6.1\times 2.1\times 10^{-11}}{2.25\times 10^{22}}}

\: \: \: \: \: \: \: \: \sf{Fg = \dfrac{6.67\times 12.81}{2.25\times 10^{33}}}

\: \: \: \: \: \: \: \: \sf{Fg = \dfrac{6.7\times 12.8}{2.25\times 10^{33}}}

\: \: \: \: \: \: \: \: \sf{Fg = \dfrac{85.76\times 10^{-33}}{2.25}}

\: \: \: \: \: \: \: \: \sf{Fg = 38.12\times 10^{-33}}

\: \: \: \: \: \: \: \:  \large \boxed{\sf\pink{Fg = 3.8 \times 10^{-32} \: N}}

Similar questions