Physics, asked by BrainlyQueer, 1 month ago

Calculate the force of gravitation between the earth and the Sun, given that the mass of the earth = 6 × 1024 kg and of the Sun = 2 × 1030 kg. The average distance between the two is 1.5 × 1011 m.

Answers

Answered by Anonymous
46

Correct question :

Calculate the force of gravitation between the earth and the Sun, given that the mass of the earth is 6×10²⁴ kg and of the Sun is 2×10³⁰ kg. The average distance between the two is 1.5×10¹¹ m.

Given :

† Mass of Earth = 6×10²⁴ kg

† Mass of Sun = 2×10³⁰ kg

† Distance between Sun and Earth = 1.5×10¹¹ m

To find :

† Force of gravitation between the Earth and Sun.

Solution :

We know that,

\boxed  {\bf {\pink {F = G \dfrac {Mm}{d^{2}}}}} \:  \:  \green \bigstar

Where,

★ F = Force of gravitation

★ G = Gravitational constant

★ M = Mass of first object

★ m = Mass of second object

★ d = Distance between the two objects

Substitute the values in the formula,

 : \implies \sf {F = 6.67 \times  {10}^{ - 11}  \times \dfrac {6 \times  {10}^{24} \times 2 \times  {10}^{30}  }{{(1.5 \times 10^{11})} ^{2}  }}

 :  \implies\boxed {\bf {\red {F = 3.557 \times 10^{22} N}}}  \:  \: \blue \bigstar \: </p><p> \:  \:

Force of gravitation between the Earth and Sun is 3.557×10²² N.

Answered by Anonymous
187

\begin{gathered}{ \orange{\underbrace{{\Huge{\textsf{\textbf{\red{Answer}}}}}}}}\end{gathered}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

 \bf{ \implies{mass \:  of  \: earth = 6 × 10²⁴ Kg}}

 \bf{ \implies{mass of sun = 2 × 10 ^{30} Kg}}

 \bf \red{distance \:  between  \: earth  \: and \:  sun = 1.5 × 10¹¹ m}

 \bf{F =  \dfrac{GMm}{r²} }

 \bf{= 6.67 × 10^{-11} ×  \dfrac{6 × 10²⁴ × 2 × 10^30}{(1.5 × 10¹¹)²} }

 \bf{= { \dfrac{6.67 \times 6 - 2}{2.25} } × 10¹³ × 10^30× 10 ^{ - 22} }

 \bf{= 35.57 × 10²¹ N}

 \boxed{ \bf{= 3.557 × 10²² N}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions