Physics, asked by shreyanshkasaudhan48, 8 months ago

calculate the force of gravitation between two protons which are placed at a distance of 10*15m the mass of a proton is 1.67×10^-27​

Answers

Answered by kissumishra71
4

Answer:

gravitational force = (G.m1.m²)/r² = 6.67×10^-11×(1.67 ×10^-27)²/(10^-15)²

Force = 6.67*1.67*1.67 × 10^-31 = 1.86 × 10^-30N

Answered by Anonymous
124

Answer

Given -

\longrightarrowmass of each proton - \bf 1.67 \times 10^{-27}

\longrightarrowDistance between them - \bf 10^{15}

━━━━━━━━━━━━

To find -

\longrightarrowForce of gravitation.

━━━━━━━━━━━━

Formula used -

\bf \boxed{\bf \dfrac{GM_1M_2}{ {r}^{2} }}

where -

\longrightarrowG is the universal gravitation constant.

\longrightarrow\bf M_1 is mass of one proton.

\longrightarrow\bf M_2 is mass of another proton.

\longrightarrowr is the distance between them.

━━━━━━━━━━━━

Solution -

\implies\bf G = 6.67 \times 10^{-11}

\implies\bf M_1 = 1.67 \times 10^{-27}

\implies\bf M_2 = 1.67 \times 10^{-27}

\implies\bf r = 10^{15}

Substituting the value in formula -

\bf\dfrac{GM_1M_2}{{r}^{2}}

\implies\bf = \dfrac{6.67 \times  {10}^{ - 11}  \times 1.67 \times  {10}^{ - 27} \times 1.67 \times  {10}^{ - 27}}{ { ({10}^{15}) }^{2} }

\implies\bf = \dfrac{6.67 \times 1.67 \times 1.67 \times  {10}^{ - 11} \times{10}^{ - 27} \times {10}^{ - 27} }{ {10}^{30} }

\implies\bf = \dfrac{18.6 \times  {10}^{ - 11 - 27 - 27} }{ {10}^{30} }

\implies\bf =  \dfrac{18.6 \times  {10}^{ - 65} }{ {10}^{30} }

\implies\bf = 18.6 \times  {10}^{ - 95}

━━━━━━━━━━━━

Similar questions