Math, asked by Steph0303, 4 days ago

Calculate the Fourier Series of f(x) = |x|
Assume the period to be -π to π.


(Necessary Formulae and Steps to be included along with explanation).

Answers

Answered by Anonymous
276

Question-

Calculate the Fourier Series of f(x) = |x|

Assume the period to be -π to π.

Solution-

General Formula for Fourier Series -

\boxed{\tt f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{n}cos\;nx+\sum_{n=1}^{\infty}b_{n}sin\;nx}

\tt {Where }

  \tt \: a_o = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx

\tt \: a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x)cos\;nx\;dx

 \tt \: b_n = \frac{2}{\pi} \int_{0}^{\pi}f(x)sin\;nx\;dx

 \tt \: n = 1, 2, 3…..

Checking if the function is even or odd-

f(x) = |x| = x

f(-x) = |-x| = x

f(x) = f(-x) = x

\impliesSince f(x) gives same result in negetive and positive value, therefore it is even.

Since function is even

 \boxed{b_n = 0}

Now we will find \sf\red{a_o}

\boxed{a_o= \frac{2}{ \pi} \int_{0}^{ \pi} f(x) dx}

 \implies {a_o= \frac{2}{ \pi} \int_{0}^{ \pi} x \: dx}

\implies \frac{2}{ \pi} [\frac{x^2}{2}]_{0}^{\pi}

\implies \frac{2}{ \pi} [\frac{{\pi}^2}{2}]_{0}^{\pi}

\implies{\pi}

 \boxed{a_o = \pi}

Now we will find \sf\pink{a_n}

\boxed{ a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x)cos\;nx\;dx}

\implies a_n = \frac{2}{\pi} \int_{0}^{\pi} x \:cos\;nx\;dx

Using Integration product rule -

 \implies \large a_n = \frac{2}{\pi} [ x\frac{ sin\;nx}{n}- \frac{-cos \:nx}{n^2}]_{0}^{\pi}

\implies \large \frac{2}{\pi} [ \frac{ cos\;n \pi}{n^2}-\frac{1}{n^2}]

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \tt (sin \:n \pi = 0 )

\implies \large \frac{2}{\pi}[ \frac{(-1)^n}{n^2}-\frac{1}{n^2}]

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \tt (cos \:n \pi = (-1)^n)

\implies \large \frac{2}{\pi n^2} [(-1)^n-1]

a_n =  \large \{_{\frac{-4}{{\pi}n^2} \:  \sf \: if \: n \: is \: odd}^{0 \:  \sf \:  \:  \:  \:  \:  if \: n \: is \: even}

Now putting values of \sf{a_o,a_n\: and\: b_n} in fourier series formula-

\tt f(x)=\frac{\pi}{2} +\frac{-4}{{\pi}}\sum_{n=1}^{\infty} \frac{1}{n^2}cos\;nx+\sum_{n=1}^{\infty}(0)sin\;nx

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \tt (considering\: n\: to\: be\; odd)

\boxed {\tt f(x)=\frac{\pi}{2}+ \frac{-4}{{\pi}}(\frac{cos x}{1^2} + \frac{cos 3x}{3^2} + \frac{cos 5x}{5^2}+ . . . . . .. )}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Note-

Originally,

  \tt \: a_o = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx

\tt \: a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)cos\;nx\;dx

 \tt \: b_n = \frac{1}{\pi} \int_{-\pi}^{\pi}f(x)sin\;nx\;dx

These were modified by Integration technique.

━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by AgrajitDebroy
0

Step-by-step explanation:

Calculate the Fourier Series of f(x) = |x|

Assume the period to be -π to π.

Similar questions