Chemistry, asked by Sujanswastikpadhan, 2 months ago

Calculate the frequency of light having wavelength 0.05A⁰​

Answers

Answered by TrustedAnswerer19
29

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

Given,

wave length  \:  \:  \:  \lambda = 0.05 \:  A^{ \circ}  \:  \:  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 0.05 \times  {10}^{ - 10}  \:  \: m \\  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  = 5  \times  {10}^{ - 12}  \:  \: m \\  \\ velocity \: of \: light \:  \: v = 3 \times  {10}^{8}  \:  \: m {s}^{ - 1}  \\  \\ frequency \:  \: f =  \: to \: find \\  \\ we \: know \: that \:  \\ v = f \lambda \\  \implies \: f =  \frac{v}{ \lambda}  \\  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  \frac{3 \times  {10}^{8} }{5 \times  {10}^{  - 12} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{3}{5}  \times  {10}^{20}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 0.6 \times  {10}^{20}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 6 \times  {10}^{19}  \:  \: Hz \\

Similar questions