Calculate the gravitational acceleration at a distance twice the radius of the earth above the surface of the earth.
Answers
Answered by
0
Answer:
g =2.44262 m/s^2 ≈2.4m/s^2
Values:
Gravitational Constant'G' = 6.67 x 10^(-11) Nm^2/kg^2
Mass of earth'M' = 6 x 10^24kg
Radius of earth'r' = 6.4x10^6m
Twice radius of earth = 2 x 6.4x10^6m
=> '2r' = 12.8 x 10^6
Solution:
Since,
Gravitational Acceleration = GM/2r^2
=> g = GM/r^2
=> g = 6.67x10^(-11) Nm^2/kg^2 x 6 x 10^24kg / (12.8 x 10^6m)^2
=> g = 6.67x10^-11 x 6 x 10^24(kgm/s^2/kg^2xkg) / 163.84x10^12
=> g = 40.02x10^(24-11-12) m/s^2 / 163.84
=> g = (40.02 x 10^1 / 163.84) m/s^2
=> g = (400.2 / 163.84) m/s^2
=> g =2.44262 m/s^2
=> g ≈ 2.4 m/s^2
Thus, if the radius of earth is twice gravitational acceleration is 2.4 m/s^2.
Similar questions