Math, asked by meenakshisomanip76, 11 months ago

Calculate the height of water column which exerts the same pressure as 72 cm of Mercury column. Given density of mercury is 13600 kg per metre cube(kg/m3)

Pls answer fast
Whoever will answer correct will get branliest and thanks and I will also follow him/her.​

Answers

Answered by Anonymous
94

\sf\large{\underbrace{h{(water)} \implies 9792\:m}}

\sf\large{Presure\:will\:remain\:same\:in\:both\:liquids.}

\sf\large{\underline{\underline{Hence,}}}

\sf\large{ \: \: \: \: \: \: \: \: \: \: Pressure = p × g × h}

\sf\large{Where,}

\sf\large{p = density\:of\:liquid}

\sf\large{ g = acceleration\:due\:to\:gravity}

\sf\large{h = height\:of\:the\:column}

\sf\large{\underline{\underline{So}}}

\sf{\implies P{(mercury)}× g × h{(mercury)} = P{(water)} × g × h{(water)}}

\sf{\implies p{(mercury)} × h{(mercury)} = p{(water)} × h{(water)}}

\sf\large{\underline{\underline{Given:}}}

\sf\large{\implies p{(mercury)} = 13600\:kg\:m^{-3}}

\sf\large{\implies h{(mercury)} = 72\:cm = 0.72\:m}

\sf\large{\implies p{(water)} = 1\:h{(water)} = ....?}

\sf\large{\underline{\underline{Hence:}}}

\sf\large{\implies h{(water)} = \dfrac{13600× 0.72}{1}}

\sf\large{\implies h{(water)} = 9792.00\:m}

Similar questions