Math, asked by meenakshisomanip76, 9 months ago

Calculate the height of water column which exerts the same pressure as 72 cm of Mercury column. Given density of mercury is 13600 kg per metre cube(kg/m3)

Pls answer fast
Whoever will answer correct will get branliest and thanks and I will also follow him/her.​

Answers

Answered by Anonymous
94

\sf\large{\underbrace{h{(water)} \implies 9792\:m}}

\sf\large{Presure\:will\:remain\:same\:in\:both\:liquids.}

\sf\large{\underline{\underline{Hence,}}}

\sf\large{ \: \: \: \: \: \: \: \: \: \: Pressure = p × g × h}

\sf\large{Where,}

\sf\large{p = density\:of\:liquid}

\sf\large{ g = acceleration\:due\:to\:gravity}

\sf\large{h = height\:of\:the\:column}

\sf\large{\underline{\underline{So}}}

\sf{\implies P{(mercury)}× g × h{(mercury)} = P{(water)} × g × h{(water)}}

\sf{\implies p{(mercury)} × h{(mercury)} = p{(water)} × h{(water)}}

\sf\large{\underline{\underline{Given:}}}

\sf\large{\implies p{(mercury)} = 13600\:kg\:m^{-3}}

\sf\large{\implies h{(mercury)} = 72\:cm = 0.72\:m}

\sf\large{\implies p{(water)} = 1\:h{(water)} = ....?}

\sf\large{\underline{\underline{Hence:}}}

\sf\large{\implies h{(water)} = \dfrac{13600× 0.72}{1}}

\sf\large{\implies h{(water)} = 9792.00\:m}

Similar questions