Calculate the Karl Pearson’s coefficient of correlation from the following pairs of values and interpret the result: Price (in Rs.) 10 11 12 13 14 15 16 17 18 19 Demand (in kgs) 420 410 400 310 280 260 240 210 210 200
Answers
Given:- Price (in Rs.): 10 11 12 13 14 15 16 17 18 19
Demand (in kgs): 420 410 400 310 280 260 240 210 210 200
To find :- Calculate the Karl Pearson’s coefficient of correlation from the following pairs of values and interpret the result.
Solution :- Table for calculating Karl Pearson’s coefficient of correlation.
n=10
suppose ,we select the mean of x= 14 and the mean of y= 310
Price Demand u= x-14 v=(y-310)/10 u.v u^2 v^2
(x) (y)
10 420 -4 11 -44 16 121
11 410 -3 10 -30 9 100
12 400 -2 9 -18 4 81
13 310 -1 0 0 1 0
14 280 0 -3 0 0 9
15 260 1 -5 -5 1 25
16 240 2 -7 -14 4 49
17 210 3 -10 -30 9 100
18 210 4 -10 -40 16 100
19 200 5 -11 -55 25 121
=5 -16 -236 85 706
coefficient of correlation (r)
coefficient of correlation (r) = [n( Σu.v)-{( Σu)( Σv)}] / [√{n( Σ u^2)-( Σ u)^2} *√{n( Σ v^2)-( Σ v)^2 }]
= {10*(-236)+ 5*16} /{ √(10*85 - 25)* √(10*706 - 256)}
= -0.9623
Hence , the Karl Pearson’s coefficient of correlation is -0.9623. (Ans)