Physics, asked by Lavleen3833, 10 months ago

Calculate the ke of a moving body if its velocity is reduced to 1/4 of the initial velocity

Answers

Answered by Rohit18Bhadauria
5

Given:

Velocity of a moving body is reduced to 1/4 of the initial velocity

To Find:

Kinetic energy of given body after reducing velocity

Solution:

Let the mass of given body be 'm' , initial velocity be 'u' and initial Kinetic energy of body be K.

We know that,

\pink{\boxed{\bf{Kinetic\:Energy=\frac{1}{2}\times m\times v^{2}}}}

where,

m is the mass of body

v is the velocity of body

So,

\longrightarrow\mathrm{K=\dfrac{1}{2}\times m\times u^{2}}

\longrightarrow\mathrm{K=\dfrac{mu^{2}}{2}}--------(1)

Now, let final velocity be 'v' and final Kinetic energy be K'

Now, according to question

\longrightarrow\mathrm{v=\dfrac{u}{4}}

So,

\longrightarrow\mathrm{K'=\dfrac{1}{2}\times m\times v^{2}}

\longrightarrow\mathrm{K'=\dfrac{1}{2}\times m\times \bigg(\dfrac{u}{4}\bigg)^{2}}

\longrightarrow\mathrm{K'=\dfrac{1}{2}\times m\times \dfrac{u^{2}}{16}}

\longrightarrow\mathrm{K'=\dfrac{mu^{2}}{32}}

\longrightarrow\mathrm{K'=\dfrac{1}{16}\bigg(\dfrac{mu^{2}}{2}\bigg)}

From (1), we get

\longrightarrow\mathrm{K'=\dfrac{1}{16}\bigg(K\bigg)}

\longrightarrow\mathrm{K'=\dfrac{K}{16}}

Hence, final Kinetic energy is 1/16 times of initial Kinetic energy.

Similar questions