Physics, asked by hkaler528, 4 months ago

Calculate the kinetic energy of a body of mass 50 kg moving with 5 ms​

Answers

Answered by IIDarvinceII
4

Given:

 \qquad \begin{cases} &\sf \sf{\pink{Mass = 5kg}} \\&\sf{\green{Velocity = 5m/s}} \end{cases}

Find:

 \\ \qquad \begin{cases} &\sf \sf{\red{Kinetic \: Energy \: of \: the \: body}}\end{cases} \\

Solution:

we, know that

\textsf{Kinetic Energy} \sf = \dfrac{1}{2}mv^2

where,

  • m = 50kg
  • v = 5m/s

Substituting these values

\textsf{Kinetic Energy} \sf = \dfrac{1}{2}mv^2 \\

\textsf{Kinetic Energy} \sf = \dfrac{1}{2}\times 50 \times (5)^2 \\

\textsf{Kinetic Energy} \sf = \dfrac{1}{2}\times 50 \times 25 \\

\textsf{Kinetic Energy} \sf = \dfrac{1}{2}\times 1250 \\

\textsf{Kinetic Energy} \sf = \dfrac{1250}{2}\\

\textsf{Kinetic Energy} \sf = 625J\\

Hence, Kinetic Energy of the body will be 625J

Answered by Anonymous
2

\sf Given \: that \begin{cases} & \sf{Mass \: of \: body = \: \bf{50 \: kg}} \\ & \sf{Velocity = \: \bf{5 \: m/s}} \end{cases}\\ \\

\sf To \; find \begin{cases} & \sf{Kinetic \: energy} \end{cases}\\ \\

\sf Solution \begin{cases} & \sf{Kinetic \: energy = \: \bf{625 \: J}} \end{cases}\\ \\

{\large{\rm{\underline{Using \; formula}}}}

\: \: \: \:{\boxed{\boxed{\sf{\longrightarrow Kinetic \: energy = \: \dfrac{1}{2}mv^{2}}}}}

~ Let's find Kinetic Energy

\: \:{\sf{\longmapsto Kinetic \: energy = \: \dfrac{1}{2}mv^{2}}}

Where,

{\bullet{\leadsto}} m denotes mass.

{\bullet{\leadsto}} v denotes velocity.

Here,

{\bullet{\leadsto}} m is 50 kg

{\bullet{\leadsto}} v is 5 m/s

\: \: \: \: \:{\sf{\longmapsto Kinetic \: energy = \: \dfrac{1}{2} \times 50 \times (5)^{2}}}

\: \: \: \:{\sf{\longmapsto Kinetic \: energy = \: \dfrac{1}{2} \times 50 \times 25}}

\: \:{\sf{\longmapsto Kinetic \: energy = \: \dfrac{1}{2} \times 1250}}

\: \: \: \: \: \:{\sf{\longmapsto Kinetic \: energy = 625 \: Joules}}

{\pink{\frak{Henceforth, \: kinetic \: energy \: is \: 625 \: J}}}

{\large{\rm{\underline{\underbrace{Additional \; knowledge}}}}}

\red \bigstar \boxed{ \sf{Pressure = \frac{normal \: force}{area}}}

\begin{gathered} \\ \red \bigstar \boxed{ \sf{Force = mass \times acceleration}} \end{gathered}

\red \bigstar {\boxed{ \sf{Power = \dfrac{energy}{time}}}}

\red \bigstar \boxed{ \sf{Intensity = \dfrac{energy}{area \times time}}}

\begin{gathered}\\ \red\bigstar\boxed{\sf{\omega=\dfrac{2 \pi}{t}}}\end{gathered}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Maxwell \: is \: unit \: of \: magnetic \: flux}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: magnetic \: flux \: is \: Weber}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: surface \: tension \: is \: \dfrac{N}{m}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: mechanical \: power \: is \: Watt}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Number \: of \: SI \: units \: are \: 7}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Ampere \: is \: the \: unit \: of \: current \: electricity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: Young's \: modulus \: of \: elasticity \: is \: Newton/m^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: pressure \: is \: Pascal}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Curie \: is \: the \: unit \: of \: radio \: activity}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Decibel \: is \: the \: unit \: of \: intensity \: of \: sound}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: electric \: charge \: is \: coulomb}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: resistance \: is \: ohm}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SI \: unit \: of \: acceleration \: is \: ms^{-2}}}}

Similar questions