Math, asked by Anonymous, 8 months ago

Calculate the length of -
1. AB
2. BC

(2) Prove that triangle ABC is right angled.

Plz... Give the right answer only. Plz...​

Attachments:

Answers

Answered by sonal1305
11

{\huge{\underline{\sf {\pink{Answer}}}}}

AB = 45 cm

BC = 60 cm

\: \:

{\huge{\underline{\sf {\pink{Explanation :}}}}}

GIVEN :

BD = 36 cm

AD = 37 cm

CD = 48 cm

\angle ADB = 90°

\angle BDC = 90°

 \:  \:  \:

FORMULA :

We know in a right angle triangle,

 {h}^{2}  =  {p}^{2}  +  {b}^{2}

where,

h = hypotenuse

p = perpendicular

b = base

 \:  \:  \:

Solution :

Part 1 :

In ∆BDC, BC is the hypotenuse

 {h}^{2}  =  {p}^{2}  +  {b}^{2}

 {BC}^{2}  =  {BD}^{2}  +  {CD}^{2}

 {BC}^{2}  =  {36}^{2}  +  {48}^{2}

 {BC}^{2}  = 1296  \: +  \: 2304 \\  = 3600

BC =  \sqrt{3600} \\  = 60 \: cm

 \:  \:  \:

Again,

In ∆ABD, AB is the hypotenuse,

 {AB}^{2}  =  {BD}^{2}  +  {AD}^{2}

 {AB}^{2}  =  {36}^{2}  +  {27}^{2}

 {AB}^{2}  = 1296 \:  +  \: 729 \\  = 2025

AB \:  =  \sqrt{2025} \\  = 45 \: cm

 \:  \:  \:  \:

Part 2 :

AB = 45 cm

BC = 60 cm

AC = (27 + 48) cm = 75 cm

 {AB}^{2}  =  {45}^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = 2025

 {BC}^{2}  =  {60}^{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 3600

 {AC}^{2}  =  {75}^{2}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 5625

We can see,

2025 + 3600 = 562 \\   {AB}^{2}  +  {BC}^{2}  =  {AC}^{2}

So,

here AC is the hypotenuse,

with \angle B = 90°

--- Proved

Answered by yadavpriy000
1

Answer:

both answers are correct thank you

Step-by-step explanation:

From class 8

Attachments:
Similar questions