Math, asked by Anonymous, 4 months ago

Calculate the length of a chord which is at a distance 12cm from the centre of a circle of radius 13cm. ​

Answers

Answered by muhamadsameer226
2

Your answer is given in attachment

Attachments:
Answered by dibyangshughosh309
141

Answer:

   \bullet \:  \:  \:  \:  \: \red{\underline{\underline{ \green{\text{Length of the Chord is 10cm}}}}}

Step-by-step explanation:

Given :

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf where \begin{cases} & \sf{radius \: of \: the \: circle = 13cm} \\ \\ & \sf{distance \: from \: the \: centre \: of}\\ &  \sf{circle  \: to \: chord= 12cm} \end{cases}\end{gathered} \end{gathered} \end{gathered}\end{gathered} \end{gathered}

To Find :

  • the Length of the chord

Solution :

 \underline{ \frak{ \dag \: as \: we \: know}}

 \\  \boxed{ \pink{ \sf{Pythagorean \:  theorem  \implies AC² = AB² + BC²}}}

__________________________________________

 \\  \sf \dashrightarrow13 {}^{2}  = 12 {}^{2}  + AC² \\  \\

 \\  \sf \dashrightarrow169 = 144 + AC² \\  \\

 \\  \sf \dashrightarrow \: AC²  = 169 - 144 \\  \\

 \\  \dashrightarrow \sf \: AC =  \sqrt{25}  \\  \\

 \\  \dashrightarrow  \sf\: AC = 5 \\  \\

Now, the Length of the Chord is 2(AC)

2(5)

\underline{\boxed{\purple{\text{10cm}}}}\star

__________________________________________

\underline{\text{Therefore, the Length of the chord is 10cm.}}

Attachments:
Similar questions