Calculate the length of a chord which is at a distance 12cm from the centre of a circle of radius
13cm.
Answers
ㅤ
Step-by-step explanation:
Given :
- The distance from the centre of the circle to the chord is 12 cm
- The radius of the circle is 13 cm
To Find :
- the length of the chord
Solution :
__________________________________________
ㅤ
C is the mid point of AB
__________________________________________
\huge{\red{\underline{\overline{ᴀ}}}}{\color{orange}{\underline{\overline{ɴ}}}}{\color{gold}{\underline{\overline{s}}}}{\color{green}{\underline{\overline{ᴡ}}}}{\blue{\underline{\overline{ᴇ}}}}{\pink{\underline{\overline{ʀ}}}}\star
ᴀ
ɴ
s
ᴡ
ᴇ
ʀ
⋆
\odot \: \: \: \: \: \: \frak{ \color{gold}{Length \: of \: the \: Chord = 10cm}}⊙LengthoftheChord=10cm
ㅤ
Step-by-step explanation:
Given :
The distance from the centre of the circle to the chord is 12 cm
The radius of the circle is 13 cm
To Find :
the length of the chord
Solution :
\underline{ \bf{ \dag \: as \: we \: know}}
†asweknow
\begin{gathered} \\ \boxed{ \pink{ \sf{Pythagoras \: Theorem \implies AC² = AB² + BC²}}}\end{gathered}
PythagorasTheorem⟹AC²=AB²+BC²
__________________________________________
\begin{gathered} \\ \dashrightarrow \sf OA² = AC² + CO² \\ \\ \end{gathered}
⇢OA²=AC²+CO²
\begin{gathered} \\ \dashrightarrow \sf{13}^{2} = AC² + {12 }^{2} \\ \\ \end{gathered}
⇢13
2
=AC²+12
2
\begin{gathered} \\ \dashrightarrow \sf169 = AC² + 144 \\ \\ \end{gathered}
⇢169=AC²+144
\begin{gathered} \\ \dashrightarrow \sf \: AC² = 169 - 144 \\ \\ \end{gathered}
⇢AC²=169−144
\begin{gathered} \\ \sf \dashrightarrow \: AC² = 25 \\ \\ \end{gathered}
⇢AC²=25
\begin{gathered} \\ \sf \dashrightarrow \: AC = \sqrt{25 } \\ \\ \end{gathered}
⇢AC=
25
\begin{gathered} \\ \sf \dashrightarrow \: AC = 5 \\ \\ \end{gathered}
⇢AC=5
ㅤ
C is the mid point of AB
\therefore \bf AC = \frac{1}{2} AB∴AC=
2
1
AB
\begin{gathered} \\ \to \tt \: 5 = \frac{1}{2} AB \\ \end{gathered}
→5=
2
1
AB
\begin{gathered} \\ \tt \to \: AB = 5 \times 2 \\ \end{gathered}
→AB=5×2
\begin{gathered} \\ \to \large{ \underline{ \boxed{ \purple{ \frak{10cm}}}} \star} \\ \end{gathered}
→
10cm
⋆
__________________________________________
\underline{ \text{Therefore, the Length of the chord = 10cm}}
Therefore, the Length of the chord = 10cm