Math, asked by Thanked, 4 months ago

Calculate the length of a chord which is at a distance 12cm from the centre of a circle of radius
13cm. ​

Answers

Answered by Anonymous
95

\huge{\red{\underline{\overline{ᴀ}}}}{\color{orange}{\underline{\overline{ɴ}}}}{\color{gold}{\underline{\overline{s}}}}{\color{green}{\underline{\overline{ᴡ}}}}{\blue{\underline{\overline{ᴇ}}}}{\pink{\underline{\overline{ʀ}}}}\star

 \odot \:  \:  \:  \:  \:  \:  \frak{ \color{gold}{Length \:  of \:  the \:  Chord = 10cm}}

Step-by-step explanation:

Given :

  • The distance from the centre of the circle to the chord is 12 cm
  • The radius of the circle is 13 cm

To Find :

  • the length of the chord

Solution :

 \underline{ \bf{ \dag \: as \: we \: know}}

 \\  \boxed{ \pink{ \sf{Pythagoras  \: Theorem \implies AC² = AB² + BC²}}}

__________________________________________

 \\  \dashrightarrow \sf OA² = AC² + CO²  \\  \\

 \\  \dashrightarrow  \sf{13}^{2}  = AC²  +  {12 }^{2}  \\  \\

 \\  \dashrightarrow \sf169 = AC²  + 144 \\  \\

 \\  \dashrightarrow \sf \: AC² = 169 - 144 \\  \\

 \\  \sf \dashrightarrow \: AC² = 25 \\  \\

 \\  \sf \dashrightarrow \: AC =  \sqrt{25 }  \\  \\

 \\  \sf \dashrightarrow \: AC = 5 \\  \\

C is the mid point of AB

 \therefore \bf AC =  \frac{1}{2} AB

 \\  \to \tt \: 5 =  \frac{1}{2} AB \\

 \\  \tt \to \: AB = 5 \times 2 \\

 \\  \to \large{ \underline{ \boxed{ \purple{ \frak{10cm}}}} \star} \\

__________________________________________

 \underline{ \text{Therefore, the Length of the chord = 10cm}}

Answered by Thanked2
4

\huge{\red{\underline{\overline{ᴀ}}}}{\color{orange}{\underline{\overline{ɴ}}}}{\color{gold}{\underline{\overline{s}}}}{\color{green}{\underline{\overline{ᴡ}}}}{\blue{\underline{\overline{ᴇ}}}}{\pink{\underline{\overline{ʀ}}}}\star

ɴ

s

ʀ

\odot \: \: \: \: \: \: \frak{ \color{gold}{Length \: of \: the \: Chord = 10cm}}⊙LengthoftheChord=10cm

Step-by-step explanation:

Given :

The distance from the centre of the circle to the chord is 12 cm

The radius of the circle is 13 cm

To Find :

the length of the chord

Solution :

\underline{ \bf{ \dag \: as \: we \: know}}

†asweknow

\begin{gathered} \\ \boxed{ \pink{ \sf{Pythagoras \: Theorem \implies AC² = AB² + BC²}}}\end{gathered}

PythagorasTheorem⟹AC²=AB²+BC²

__________________________________________

\begin{gathered} \\ \dashrightarrow \sf OA² = AC² + CO² \\ \\ \end{gathered}

⇢OA²=AC²+CO²

\begin{gathered} \\ \dashrightarrow \sf{13}^{2} = AC² + {12 }^{2} \\ \\ \end{gathered}

⇢13

2

=AC²+12

2

\begin{gathered} \\ \dashrightarrow \sf169 = AC² + 144 \\ \\ \end{gathered}

⇢169=AC²+144

\begin{gathered} \\ \dashrightarrow \sf \: AC² = 169 - 144 \\ \\ \end{gathered}

⇢AC²=169−144

\begin{gathered} \\ \sf \dashrightarrow \: AC² = 25 \\ \\ \end{gathered}

⇢AC²=25

\begin{gathered} \\ \sf \dashrightarrow \: AC = \sqrt{25 } \\ \\ \end{gathered}

⇢AC=

25

\begin{gathered} \\ \sf \dashrightarrow \: AC = 5 \\ \\ \end{gathered}

⇢AC=5

C is the mid point of AB

\therefore \bf AC = \frac{1}{2} AB∴AC=

2

1

AB

\begin{gathered} \\ \to \tt \: 5 = \frac{1}{2} AB \\ \end{gathered}

→5=

2

1

AB

\begin{gathered} \\ \tt \to \: AB = 5 \times 2 \\ \end{gathered}

→AB=5×2

\begin{gathered} \\ \to \large{ \underline{ \boxed{ \purple{ \frak{10cm}}}} \star} \\ \end{gathered}

10cm

__________________________________________

\underline{ \text{Therefore, the Length of the chord = 10cm}}

Therefore, the Length of the chord = 10cm

Similar questions