Physics, asked by shilpashahi499, 9 months ago

Calculate the magnetic field at a distance of 5 cm from an infinite straight conductor carrying current of 10 A.

Answers

Answered by LoverLoser
11

\rm{ \blue{\bigstar Find \longrightarrow }}

  • Magnetic Field-?

\rm{ \green{\bigstar Given \longrightarrow }}

  • Current = 10A
  • Distance = 5cm

\rm{ \pink{\bigstar Formula \ used \longrightarrow }}

\boxed{\bf{ B= \dfrac{\mu_o I}{2\pi d} } }

where,

B= magnetic field,

I= current

d= Magnetic field at a distance away from the wire.

\rm{ \orange{\bigstar SoLution \longrightarrow }}

Firstly we will convert distance 5cm to m,

\sf{1cm= 0.01 m \implies 5cm= 0.05 m}

d= 0.05m

Put the value in the formula

\sf{ B= \dfrac{\mu_o I}{2\pi d} }

we get,

\sf{ B= \dfrac{10^{-7}\times 4\pi \times 10}{2 \pi \times 0.05}}

\sf{B= \dfrac{10^{-7} \times 2 \times 10 }{0.05} }

\boxed{\bf{B= 4\times 10^{-5} T}}

\red{\rm{\underline{\therefore Magnetic \ Field \ is \ 4\times 10^{-5} T }}}

_____________________________

Answered by Anonymous
2

Given ,

Current (I) = 10 A

Distance (r) = 5 cm or 5 × 10^(-2) m

We know that , the magnetic field due to an infinitely long straight conductor is given by

 \boxed{ \tt{B =  \frac{  u_{o}I  }{2\pi r}}}

Thus ,

 \tt \implies B =  \frac{4\pi \times  {(10)}^{ - 7}  \times 10}{2\pi \times 5 \times  {(10)}^{ - 2} }

\tt \implies B = 4\times  {(10)}^{ - 5}  \:  \: testla

Therefore , the magnetic field is 4 × 10^(-5) T

Similar questions