Physics, asked by Nikiselly, 10 months ago

calculate the Magnitude of electrostatic force between a proton and an electrom separated by a distance 0.5 A

Attachments:

Answers

Answered by chaithanya305
4

Explanation:

F=k.q1.q2/R^2

given q1=q2=1.6×10^-19

k=9×10^9

R=0.5×10^-10m

F=9×10^9×(1.6×10^-19)^2/(5×10^-11)^2

F=4.608×10^-7

if u like this answer follow me for more such answers in physics

Answered by Sharad001
15

Question :-

Calculate the magnitude of electrostatic force between a proton and an electron seperated by a distance of 0.5 Å .

Answer :-

\leadsto  \red{\boxed{ \sf{F = \pink{ 92.16 \times }{10}^{ - 6}  \: newton }}} \:

To Find :-

→ Electrostatic force between an electron and a proton .

Explanation :-

Given that :-

  • Distance between proton and electron (r)= 0.5 Å .

We know that :

 \to  \red{ \boxed{ \sf{F \:  =  \green{ \frac{1}{4 \pi \:  \epsilon_{0} } }  \frac{q_{1}  \times q_{2} }{ \pink{ {r}^{2} }} }} }\\  \\  \because \sf{charge \: of \: proton \: is \: equal} \\  \:  \:  \:  \:  \:  \sf{   to \: charge \: of \: electron \: } \\  \\  \therefore \sf \red{ charge \: of \: both \:}  = 1.6 \green{ \times  {10}^{ - 19}  \:} coulamb \:  \\   \\ \implies \boxed{ \green{ \frac{1}{4 \pi \:  \epsilon_{0} } } = 9 \times  {10}^{9}  \:  \: N-m^{2} C^{-2}  \: } \\  \\  \implies  \boxed{ \sf \: 1 \: Å  =  {10}^{ - 10}  \: m \:  } \\ \sf hence \:  \\  \implies \sf r \:  = 0.5 \times  {10}^{ - 10}  \: m \:  \:  = 5 \times  {10}^{ - 11}  \: m

Hence , required force is

 \leadsto \sf{ F = 9 \times  {10}^{9} \times  \frac{1.6 \times  {10}^{ - 19} \times 1.6 \times  {10}^{ - 19}  }{25 \times  {10}^{ - 22} }}  \\  \\  \leadsto \sf{ \: F = 9 \times 1.6 \times 1.6}\times \frac{ {10}^{9 - 38 + 22} }{25}  \\  \\  \leadsto \sf{F =  \frac{9 \times 16 \times 16}{25}  \times  {10}^{9 - 38 + 22 - 2} } \\  \\  \leadsto  \red{\boxed{ \sf{F = \pink{ 92.16 \times }{10}^{ - 6}  \: newton }}}

Similar questions