Math, asked by krishna6837687, 7 months ago

Calculate the magnitude of the angle marked as x in each of the following triangles.

(a) Ans — angle P = 50°
(b) Ans — angle A = 60°
(c) Ans — angle A = 75°
(d) Ans — angle R = 110° ​

Attachments:

Answers

Answered by hukam0685
7

Step-by-step explanation:

1) Given: Triangle (a)

To find:

 \angle \: P

Solution:

 \angle \: SQP +  \angle \:PQR   = 180° \:  \:  \:  \: (linear \: pair) \:  \\ \\ 120° +  \angle \: PQR = 180° \\  \\  \angle \: PQR = 180° - 120° \\  \\  \angle \: PQR = 60° \\  \\

By the same way in the other side

\angle \: PRT +  \angle \: PRQ  = 180° \:  \:  \:  \: (linear \: pair) \:  \\ \\ 110° +  \angle \: PRQ = 180° \\  \\  \angle \: PRQ = 180° - 110°\\  \\  \angle \: PRQ = 70° \\  \\

In ∆PQR

Sum of all three angles is 180°

 \angle \: PRQ +  \angle \: RPQ +  \angle \: QPR = 180° \\  \\ 60° + 70° +\angle \: QPR  = 180° \\  \\  \angle \: QPR  = 180° - 130° \\  \\ \angle \: QPR  = 50° \\  \\

Thus,

\bold{\angle \: P= 50°} \\  \\

b) Given: Triangle (b)

To find:

 \angle \: A

Solution:

 \angle \: DCA +  \angle \:ACB   = 180° \:  \:  \:  \: (linear \: pair) \:  \\ \\ 90° +  \angle \: ACB = 180° \\  \\  \angle \: PQR = 180° - 90° \\  \\  \angle \: ACB = 90° \\  \\

In ∆ABC

Sum of all three angles is 180°

 \angle \: ABC +  \angle \: ACB +  \angle \: BAC = 180° \\  \\ 30° + 90° +\angle \: BAC  = 180° \\  \\  \angle \: BAC  = 180° - 120° \\  \\ \angle \: BAC = 60° \\  \\\bold{\angle\:A=60°}\\

c)Given: Triangle (c)

To find:

 \angle \: A

Solution:

 \angle \: ACD +  \angle \:ACB   = 180° \:  \:  \:  \: (linear \: pair) \:  \\ \\ 135° +  \angle \: ACB = 180° \\  \\  \angle \: ACB = 180° - 135° \\  \\  \angle \: ACB = 45° \\  \\

In ∆ABC

Sum of all three angles is 180°

 \angle \: ABC +  \angle \: ACB +  \angle \: BAC = 180° \\  \\ 60° + 45° +\angle \: BAC  = 180° \\  \\  \angle \: BAC  = 180° - 105° \\  \\ \angle \: BAC = 75° \\  \\\bold{\angle\:A=75°}

d) Given: Triangle (d)

To find:

 \angle \: R

SPT is a straight line,sum of all angles is 180°

 \angle \: SPQ +  \angle \: QPR +  \angle \: TPR = 180° \\  \\ 60° + \angle \: QPR +70°  = 180° \\  \\  \angle \: QPR  = 180° - 130° \\  \\ \angle \: QPR = 50° \\  \\

EXTERIOR ANGLE OF TRIANGLE IS EQUAL TO SUM OF TWO OPPOSITE INTERIOR ANGLES OF TRIANGLE.

Thus,

 \angle \: PRU=   \angle \: PQR +  \angle \: QPT \\  \\ \angle \: PRU=60° + 50°  \\  \\  \angle \: PRU  = 110°\\  \\ \bold{\angle \: R = 110°} \\  \\

Hope it helps you.

To learn more on brainly:

1)ABC is a triangle with BC produced to D.Also bisectors of angle ABC and angle ACD meet at E. show that angle BEC=1/2 ang...

https://brainly.in/question/5270768

2)आकृति 2 में x तथा y का मान ज्ञात कीजिए और फिर दर्शाइए कि AB||CD है

https://brainly.in/question/21677529

Answered by santoshmahala891
0

Answer:

dtdtdydudìiikkkkkkkkjj

jjjythfr

hhbkhfg

jukh

Similar questions