Science, asked by syedaaneesf06, 8 months ago

calculate the mass of a proton having a wavelength 5984Angstron and velocity 3×10^8° meter second​

Answers

Answered by murmusupriya202
0

Answer:

" wavelength=h/mv

so m= h/(wavelength*velocity)

6.6*10^34/{[5894*10(-10)]*3*10*8}

on solving we get:

m=0.000373*10^(-32)

I=h/mc .I stands for wavelength.

so m= h/c l

Hence m=6.626*10^-34/3*10*8*589*10^-9

So m=3.75*10^-36kg

Compare this with atomic mass unit which is of the order of 10^-27.

Hence,mass of proton is not considerable.

Answered by Mysterioushine
0

Given :

  • Wavelength of a proton = 5984 A⁰
  • Velocity of proton = 3 × 10⁸ m/s

To find :

  • Mass of the proton

Solution :

The relation between (angstroms) A⁰ and m (metres) is given by ,

 \boxed {\rm{1 \: A {}^{0} =  {10}^{ - 10}  \: m }}

 :  \implies \rm 5984 \: A {}^{0}  = 5984 \times  {10}^{ - 10}  \: m

Now The relation between Wavelength , mass and velocity is given by ,

 \dag  \: \boxed {\rm{ \lambda =  \frac{h}{mv} }}

Where ,

  • λ is wavelength
  • m is mass
  • v is velocity
  • h is planck's constant (=6.625 × 10⁻³⁴ Js)

We have ,

  • λ = 5984 A⁰ = 5984 × 10⁻¹⁰ m
  • v = 3 × 10⁸ m/s
  • m = ?
  • h = 6.625 × 10⁻³⁴ J.s

By substituting the values ,

 :  \implies \rm \: 5984  \times  {10}^{ - 10}  \:  m=  \frac{6.625 \times  {10}^{ - 34} \: J.s }{m \times 3 \times  {10}^{8} \: m {s}^{ - 1}  }  \\  \\  :  \implies \rm \: 5984 \times  {10}^{ - 10}  \: m =  \frac{6.625 \times  {10}^{ - 34}  \: kg.m {}^{2}s {}^{ - 2}.s  }{m \times 3 \times  {10}^{8} \: m {s}^{ - 1}  }  \\  \\   : \implies \rm \: 5984 \times  {10}^{ - 10}  \: m =  \frac{6.625 \times  {10}^{ - 34} \: kg. \cancel{m {}^{2} . {s}^{ - 1}}  }{m \times 3 \times  {10}^{8}  \cancel{m {s}^{ - 1} }}  \\  \\  :  \implies \rm \: 5984 \times  {10}^{ - 10}  \: m =  \frac{6.625 \times  {10}^{ - 34} \: kg.m }{m \times 3 \times  {10}^{8} }  \\  \\  :  \implies \rm \: 5984 \times  {10}^{ - 10}  \cancel{m}  =  \frac{6.625 \times  {10}^{ - 34} \: kg. \cancel{m} }{m \times 3 \times  {10}^{8} }  \\  \\ :   \implies \rm \: 5984 \times  {10}^{ - 10}  =  \frac{6.625 \times 10 {}^{ - 34}  \: kg \times 10 {}^{ - 8} }{3 \times m}  \\  \\  :  \implies \rm \: 5984 \times 10 {}^{ - 10}  =  \frac{6.625 \times  {10}^{ - 42} \: kg }{3m}  \\  \\   : \implies \rm \: 5984 \times  {10}^{ - 10}  \times 3m = 6.625 \times  {10}^{ - 42}  \: kg \\  \\   : \implies \rm \: 3m =  \frac{6.625 \times  {10}^{ - 42}  \: kg}{5984 \times 10 {}^{ - 10} }  \\  \\   : \implies \rm \: 3m = 1.107 \times  {10}^{ - 35}  \: kg \\  \\   : \implies \rm \: m =  \frac{1.107 \times  {10}^{ - 35} \: kg }{3}  \\  \\  :  \implies \rm \: m = 3.7 \times 10 {}^{ - 36}  \: kg

Hence , The mass of the proton is 3.7 × 10⁻³⁶ kg

Similar questions