Math, asked by chadarampavankumar19, 3 months ago

Calculate the mean value of a bulb, if
t> 0
p(t) = 0.02e-0.021
= 0 otherwise
Where,
t is in hours.
(a) T = 25 hours
(b) T = 50 hours
(c) T = 75 hours
(d) T = 100 hours

Answers

Answered by MaheswariS
11

\textbf{Given:}

\mathsf{p(t)=0.02\,e^{-0.02t},\;\;t\,>\,0}

\mathsf{\;\;=0,\;\;otherwise}

\textbf{To find:}

\textsf{Mean value of bulb}

\textbf{Solution:}

\textsf{Mean value of bulb}

\mathsf{=\int\limits_{0}^{\infty}\,t\,p(t)\,dt}

\mathsf{=\int\limits_{0}^{\infty}\,t\,(0.02\,e^{-0.02t})\,dt}

\mathsf{=0.02\int\limits_{0}^{\infty}\,t\,e^{-0.02t}\,dt}

\mathsf{Using,}

\boxed{\mathsf{\int\limits_{0}^{\infty}\,x^n\,e^{-ax}\,dx=\dfrac{n!}{a^{n+1}}}}

\mathsf{=0.02\left(\dfrac{1!}{0.02^2}\right)}

\mathsf{=\dfrac{1}{0.02}}

\mathsf{=\dfrac{100}{2}}

\mathsf{=50\;hours}

\textbf{Answer:}

\textsf{Option (b) is correct}

Answered by smadahar9599
0

give answers of this equation

Attachments:
Similar questions