Chemistry, asked by helllll47, 10 months ago

Calculate the molarity and normality of a solution containing 9.8 g of H2SO4 in 250 cm3 of the solution.​

Answers

Answered by MajorLazer017
75

Answer :

  • Molarity of the solution = 0.4 M.
  • Normality of the solution = 0.8 N.

Step-by-step explanation :

Given that,

  • Mass of \bold{H_2SO_4} dissolved = 9.8 g.
  • Volume of the solution = 250 cm³ = 0.250 L.

\hrulefill

Calculation of molarity :

Molar mass of \bold{H_2SO_4=98\:g\:mol^{-1}}

∴ No. of moles of \bold{H_2SO_4=\frac{Mass\:in\:g}{Molar\:mass}}

\implies\bold{\dfrac{9.8\:g}{98\:g\:mol^{-1}}=0.1\:mole}

Now, \bold{Molarity=\frac{No.\:of\:moles\:of\:the\:solute}{Volume\:of\:solution\:in\:litres}}

\implies\bold{\dfrac{0.1\:mol}{0.250\:L}=0.4\:mol\:L^{-1}}

\implies\bold{0.4\:M}

\\

Calculation of normality :

Eq. mass of \bold{H_2SO_4=\frac{Mol.\:mass\:of\:H_2SO_4}{Basicity\:of\:H_2SO_4}}

\implies\bold{\dfrac{98}{2}=49}

∴ No. of g equivalent of \bold{H_2SO_4=\frac{Mass\:in\:g}{Eq.\:mass}}

\implies\bold{\dfrac{9.8}{49}=0.2}

Now, \bold{Normality=\frac{No.\:of\:g\:eq.\:of\:the\:solute}{Volume\:of\:solution\:in\:litres}}

\implies\bold{\dfrac{0.2\:g\:eq}{0.250\:L}=0.8\:g\:eq\:L^{-1}}

\implies\bold{0.8\:N}

Similar questions