Science, asked by subodht2002, 4 months ago

Calculate the moment of resistance of a sold
circular beam section of 120 mm diameter
maximum bending stress is 3.273.68 MPa​

Answers

Answered by latakhatik0
3

Sunday was bigdkgjrpu47p

Answered by vinod04jangid
0

Answer:

555.4 Newton meter

Explanation:

Given:- Diameter of circular beam section = 120 mm.

             Maximum bending stress = 3.27368 Mpa.

To Find:- The moment of resistance.

Solution:-

1 meter = 1000 millimeter.

120 mm = 120/1000 meters

                = 0.12 meters

1 Megapascal = 1000000 pascal

3.27368 Mpa = 3273680 pascal

As we know, The moment of resistance of a beam is given by

                               M = σ × Z  , where M = Bending moment,

                                                               σ = Bending stress , and

                                                                Z = Section modulus

We also know that, section modulus of a circular beam is

                                Z = \frac{\pi }{32} d³ , where d = diameter of circular beam.

Now, using the above formulas, we can write that

M = σ × \frac{\pi }{32}

Substituting the values σ = 3273680 and d = 0.12 in the above formula, we get

M = 3273680 × \frac{\pi }{32} (0.12)³

   = 3273680 × 0.09818 × 0.001728

   = 555.4 Newton meter.             [ ∵ 1 pascal m² = 1 Newton ]

Therefore, the moment of resistance is 555.4 N-m.

#SPJ3

Understand moment of resistance in depth using the below link

https://brainly.in/question/5202879

https://brainly.in/question/42064792

Similar questions