Chemistry, asked by kaviyasg2005, 8 months ago

calculate the momentum of a partical which has de Broglic wavelength of 2A°[h=6.626×10*-34 kg m*2 s*-1​

Answers

Answered by Anonymous
20

ANSWER:

  • The momentum of the particle = 3.313 × 10⁻²⁴ kgm/s.

 \\ \\

GIVEN:

  • De Broglie wavelength is 2 A°.

 \\ \\

TO FIND:

  • The momentum of the particle.

 \\ \\

EXPLANATION:

 {\huge{ \star}} \  \boxed{ \boldsymbol{ \large{ \pink {p =\dfrac{h }{ \lambda}}}}} \\  \\

 \sf \implies h = 6.626 \times  {10}^{ - 34} \  Js \\  \\

\sf  \implies\lambda = 2\ A^{\circ} = 2\times 10^{-10}\ m \\  \\

\sf \leadsto p =\dfrac{6.626 \times  {10}^{ - 34} }{2 \times  {10}^{ - 10} } \\  \\

\sf \leadsto p =\dfrac{3.313 \times  {10}^{ - 34} }{  {10}^{ - 10} } \\  \\

\sf \leadsto p =3.313 \times  {10}^{ - 24} \ kgm {s}^{ - 1}  \\  \\

Hence the momentum of the particle = 3.313 × 10⁻² kgm/s.

 \\ \\

EXTRA CACULATION:

 {\huge{ \star }}\  \boxed{ \boldsymbol{ \large{ \orange{E=\dfrac{hc }{ \lambda}}}}} \\  \\

 \sf \implies h = 6.626 \times  {10}^{ - 34} \  Js \\  \\

\sf  \implies\lambda = 2\ A^{\circ} = 2\times 10^{-10}\ m \\  \\

 \sf \implies c = 3 \times  {10}^{ 8} \  m {s}^{ - 1} \\  \\

 \sf \longmapsto E=\dfrac{6.626 \times  {10}^{ - 34}  \times 3 \times  {10}^{8}  }{2 \times  {10}^{ - 10} } \\  \\

 \sf \longmapsto E=\dfrac{3.313 \times  {10}^{ - 34}  \times 3 \times  {10}^{8}  }{ {10}^{ - 10} } \\  \\

 \sf \longmapsto E=9.939 \times  {10}^{ - 24}  \times  {10}^{8}  \\  \\

 \sf \longmapsto E=9.939 \times  {10}^{ - 16} \ J\\  \\

Hence the energy of the particle = 9.939 × 10⁻¹⁶ J.

Answered by Anonymous
0

\huge{\underline{Solution}}

Momentum = \sf\dfrac{λ}{h}

(using de Broglie equation)

⟹\sf\dfrac{2.5×10 −10}{6.6×10-34}

\sf{⟹\: 2.64×10 −24kg\: m\: sec\:</p><p>−1}

.

Similar questions