Physics, asked by pihuhazra9857, 2 months ago

calculate the no of electrons flowing through the cross section of conductor when current of 20 ma flows for 50 seconds​

Answers

Answered by rsagnik437
330

Answer :-

6.25 × 10¹⁸ electrons are flowing through the cross section of the conductor .

Explanation :-

We have :-

→ Current (I) = 20 mA

→ Time taken (t) = 50 seconds

→ Charge of an electron (e) = 1.6 × 10¹ C

To find :-

→ Number of electrons (n) .

________________________________

Firstly, let's convert the given unit of current from mA to A .

⇒ 1 mA = 0.001 A

⇒ 20 mA = 20(0.001)

⇒ 0.02 A

Now, we know that :-

I = Q/t

⇒ I = ne/t

⇒ 0.02 = (n × 1.6 × 10⁻¹⁹)/50

⇒ 0.02(50) = 1.6 × 10⁻¹⁹ n

⇒ 1 = 1.6 × 10⁻¹⁹ n

⇒ n = 1/(1.6 × 10⁻¹⁹)

⇒ n = 1/1.6 × 1/10⁻¹⁹

⇒ n = 0.625 × 10¹⁹

n = 6.25 × 10¹⁸

Answered by MяMαgıcıαη
280
  • \boxed{\sf{\purple{No\:of\:electrons\:=\:\bf{6.25 \:\times\:10^{18}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explanation :

\underline{\underline{\bf{\green{Given\::-}}}}

  • Current, I = 20 mA
  • Time taken, t = 50 seconds
  • Charge of an electron, e = 1.6 × 10^-19

\underline{\underline{\bf{\green{To\:Find\::-}}}}

  • Number of electrons = ?

\underline{\underline{\bf{\green{Solution\::-}}}}

Converting unit of current into A :-

ㅤㅤㅤ1 mA = 0.001 A

ㅤㅤㅤ20 mA = 20 × 0.001

ㅤㅤㅤ20 mA = 0.02 A

Using formula :-

\qquad\red\bigstar\:{\underline{\boxed{\bf{I = \dfrac{Q}{t}}}}}

\qquad\leadsto\quad\sf I = \dfrac{ne}{t}

\qquad\leadsto\quad\sf 0.02 = \dfrac{n\:\times\:1.6\:\times\:10^{-19}}{50}

\qquad\leadsto\quad\sf 0.02 \:\times\:50 = (1.6\:\times\:10^{-19})n

\qquad\leadsto\quad\sf \dfrac{1}{1.6\:\times\:10^{-19}} = n

\qquad\leadsto\quad\sf 0.625\:\times\:10^{19} = n

\qquad\leadsto\quad\bf{ n = \red{6.25\:\times\:10^{18}}}

\small\therefore\:{\underline{\sf{Hence,\:number\:of\:electrons\:=\:\bf{6.25\:\times\:10^{18}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions