Physics, asked by aleenaalphonsthomas, 12 days ago

calculate the no. of Molecules present in 9.8g of sulphuric acid​

Answers

Answered by Sayantana
8

Number of molecules(N):

\boxed{ \bf N = n\times N_{A}}

where n = no. of moles , N_A = avagadro constant = 6.023 × 10²³

Solution

\rm Sulphuric \: acid = H_2SO_4

  • molar mass = 98

\to\rm moles = \dfrac{mass}{molar \: mass}

\to\rm n = \dfrac{m}{M} = \dfrac{9.8}{98}

\to\bf n = 0.1

-----

\to\rm N = 0.1\times 6.023 \times 10^{23}

\to\bf N =  6.023 \times 10^{22}

so, number of molecules present in 9.8 g of Sulphuric acid is 6.023 × 10²².

Answered by MystifiedBoy
33

Answer:

  • Given mass of sulphuric acid = 9.8 g

First let's calculate the molar mass of Sulphuric acid:

\footnotesize\longrightarrow\:\sf M_{(H_2SO_4)} = 2 \times 1 + 32 + 16 \times 4 \\

\footnotesize\longrightarrow\:\sf M_{(H_2SO_4)} = 2 + 32 + 64 \\

\footnotesize\longrightarrow\: \underline{ \underline{\sf M_{(H_2SO_4)} = 98 \:  \frac{g}{mol}}}  \\

Now, let's find the no. of moles of Sulphuric acid:

\footnotesize\longrightarrow\:\sf n_{(H_2SO_4)} =  \frac{Mass}{Molar \:Mass }  \\

\footnotesize\longrightarrow\:\sf n_{(H_2SO_4)} =  \frac{9.8}{98 }  \\

\footnotesize\longrightarrow\: \underline{ \underline{\sf n_{(H_2SO_4)} =  0.1 \: mol }}\\

Now, we can calculate the no. of molecules in Sulphuric acid:

\footnotesize\longrightarrow\:\sf n_{(H_2SO_4)} =  \frac{Molecules}{Avogadro's  \: Number  }  \\

\footnotesize\longrightarrow\:\sf 0.1 =  \frac{Molecules}{6.022 \times  {10}^{23}  }  \\

\footnotesize\longrightarrow\:\sf Molecules = 0.1 \times 6.022 \times  {10}^{23}  \\

\footnotesize\longrightarrow\:\sf Molecules = 0.6022 \times  {10}^{23}  \\

\footnotesize\longrightarrow\:\sf Molecules = 6.022 \times  {10}^{23}  \times  {10}^{ - 1}  \\

\footnotesize\longrightarrow\: \underline{ \orange{ \boxed{ \gray{\bf Molecules = 6.022 \times  {10}^{22} }}}   }\\

Similar questions