Chemistry, asked by Anshik7395, 9 months ago

Calculate the osmosis pressure of 5% urea at 270K

Answers

Answered by Unni007
4

We know ,

  • Gram Atomic Mass of Urea = 60 g

\displaystyle\sf{Amount\:of\:Urea=\frac{5}{100}\times 60}

\implies{\displaystyle\sf{Amount\:of\:Urea=0.05\times 60}}

\implies\displaystyle\sf{Amount\:of\:Urea= 3 g}

______________________________

\boxed{\displaystyle\sf{Number\:of\:Moles=\frac{Given\:Mass}{GMM}}}

\implies\displaystyle\sf{n=\frac{3}{60}}

\implies\displaystyle\sf{n=0.05}

______________________________

\boxed{\displaystyle\sf{Concentration \:of \:Solute=\frac{Moles\:of\:Urea}{Volume \:of \:Solution}\times 1000}}

Here,

  • Moles of Urea = 0.05
  • Volume of Solution = 100 ml

Applying the values to the equation ,

\implies\displaystyle\sf{C=\frac{0.05}{100}\times 1000}

\implies\displaystyle\sf{C=0.05\times 10}

\implies\displaystyle\sf{C=0.5\:M}

______________________________

The osmotic pressure can be determined from the equation ,

\boxed{\displaystyle\sf{\pi=i\times C\times R\times T}}

Where,

  • {\displaystyle\sf{\pi=Osmotic\:Pressure}}
  • \displaystyle\sf{i=Van't-Hoff\:Factor}
  • \displaystyle\sf{C=Concentration \:of\:solute\:(in\:terms\:of\:Molarity)}
  • {\displaystyle\sf{R=Universal\:Gas\:constant}}
  • {\displaystyle\sf{T=Temperature\:(in\:Kelvin)}}

Here,

  • i = 1
  • C = 0.5 M
  • R = 0.082 L atm mol⁻¹ K⁻¹
  • T = 270 K

Applying the values to the equation ,

\implies\displaystyle\sf{\pi=1\times 0.5\times 0.082\times 270}

\implies\displaystyle\sf{\pi=11.07\:atm}

______________________________

Therefore ,

\boxed{\bold{\displaystyle\sf{Osmotic\:Pressure=11.07\:atm}}}

Similar questions