Physics, asked by elvinadsouza, 1 year ago

calculate the percentage error in kinteic energy. if percentage error in mass and velocity are 2% & 3%​

Answers

Answered by Anonymous
6

Solution :

Given:

✏ Percentage error in mass = 2%

✏ Percentage errorin velocity = 3%

To Find:

✏ Percentage error in kinetic energy

Formula:

✏ Formula of kinetic energy is given by

 \implies \sf \red{KE =  \dfrac{1}{2} m {v}^{2} } \\  \\  \therefore \sf \:  \blue{KE \propto{m {v}^{2} }} \\  \\  \star \:  \underline{ \boxed{ \bold{ \sf{ \orange{ \%\dfrac{ \triangle{KE}}{KE}  =  \%\dfrac{ \triangle{m}}{m}  + \% \dfrac{ 2\triangle{v}}{v} }}}}} \:  \star

Calculation:

 \implies \sf \: \% \dfrac{ \triangle{KE}}{KE}  = 2\% + 2(3\%) \\  \\  \implies \sf \: \% \dfrac{ \triangle{KE}}{KE}  = 2\% + 6\% \\  \\  \implies \:  \underline{ \boxed{ \bold{ \sf{ \green{ \large{\% \dfrac{ \triangle{KE}}{KE}  = 8\%}}}}}} \:  \gray{ \bigstar}

Answered by Anonymous
0

  \huge \mathtt{ \fbox{Solution :)}}

Given ,

Percentage error in mass = 2 %

Percentage error in velocity = 3 %

We know that , kinetic energy of the body is given by

 \large \mathtt{  \fbox{Kinetic \:  energy  =  \frac{1}{2}m {(v)}^{2}  }}

 \therefore  \fbox{\sf \%    \:  in \: \frac{Δk}{k}   = \%   \:  in \:  \frac{Δm}{m}  +2 \times  \%  \: in \:  \frac{Δv}{v} }

Thus ,

% error in kinetic energy = 2 + 2 × 3

% error in kinetic energy = 2 + 6

% error in kinetic energy = 8 %

Hence , the percentage error in kinteic energy is 8 %

______________ Keep Smiling

Similar questions