Math, asked by Appu4731, 2 months ago

calculate the perimeter and area of the triangle in the picture ​

Attachments:

Answers

Answered by Anonymous
1
As the sum of all angles in triangle is 180 hence,60 +75+x=180 and the side is 45
Answered by mathdude500
5

\large\underline{\bold{Solution :-  }}

Given :-

Let us assume a triangle ABC in which

  • AB = 'c' cm

  • AC = 'b' cm

  • BC = b = 4 cm

  • ∠B = 60°

  • ∠C = 75°

To Find :-

  • Area of triangle ABC.

Concept used :-

Angle sum Property of triangle

  • The sum of angles of a triangle is 180°.

Sine Law

Let us consider a triangle ABC whose sides AB = c units, BC = a units and AC = b units, then

\rm :\longmapsto\:\dfrac{a}{sinA}  = \dfrac{b}{sinB}  = \dfrac{c}{sinC}

Area of triangle ABC is given by

\rm :\longmapsto\:Area_{(triangle)} = \dfrac{1}{2} ab \: sinC

CALCULATION :-

We know,

  • In triangle ABC,

  • Sum of the angmles is 180°.

So,

  • ∠A + ∠B + ∠C = 180°.

  • ∠A + 60° + 75° = 180°

  • ∠A = 180° - 135°

  • ∠A = 45°

Now,

  • Using Sine Law, In triangle ABC , we have

\rm :\longmapsto\:\dfrac{a}{sinA}  = \dfrac{b}{sinB}

\rm :\longmapsto\:\dfrac{4}{sin45 \degree \: }  = \dfrac{b}{sin60\degree \:}

\rm :\implies\:b \:  = \dfrac{4}{sin45\degree \:}  \times sin60\degree \:

\rm :\implies\:b \:  = 4 \times  \sqrt{2}  \times \dfrac{ \sqrt{3} }{2}

\rm :\implies\:b \:  =  \: 2 \sqrt{6}  \: cm

Now,

we know,

\rm :\longmapsto\:sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx

So,

\rm :\longmapsto\:sin \: 75\degree \: = sin(45\degree \: +  \: 30\degree \:)

\rm :\longmapsto\:sin75\degree \: = sin45\degree \:cos30\degree \: + sin30\degree \:cos45\degree \:

\rm :\longmapsto\:sin75\degree \: = \dfrac{1}{ \sqrt{2} }  \times \dfrac{ \sqrt{3} }{2}  + \dfrac{1}{2}  \times \dfrac{1}{ \sqrt{2} }

\rm :\longmapsto\:sin75\degree \: = \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2} }

Now,

  • Area of triangle ABC is evaluated as

\rm :\longmapsto\:Area_{(triangle)} = \dfrac{1}{2} ab \: sinC

\rm :\longmapsto\:Area_{(triangle)} = \dfrac{1}{2}  \times 4 \times 2 \sqrt{6}  \times sin75\degree \:

\rm :\longmapsto\:Area_{(triangle)} = 4 \sqrt{6}  \times  \bigg(\dfrac{ \sqrt{3} + 1 }{2 \sqrt{2} }  \bigg)

\rm :\longmapsto\:Area_{(triangle)} = 2 \sqrt{3}  \times ( \sqrt{3}  + 1)

\rm :\longmapsto\:Area_{(triangle)} = 6 + 2 \sqrt{3}  \:  {cm}^{2}

Additional Information :-

Cosine Law

 \boxed{ \tt \:cosA = \dfrac{ {b}^{2}  +  {c}^{2} -  {a}^{2}  }{2bc}  }

 \boxed{ \tt \:cosB = \dfrac{ {c}^{2}  +  {a}^{2} -  {b}^{2}  }{2ac}  }

 \boxed{ \tt \:cosC = \dfrac{ {a}^{2}  +  {b}^{2} -  {c}^{2}  }{2ab}  }

Projection Formula :-

 \boxed{ \tt \:b \:  = a \: cosC \:  +  \: c \: cosA }

 \boxed{ \tt \: a = b \: cosC \:  +  \: c \: cosB}

 \boxed{ \tt \: c = a \: cosB \:  +  \: b \: cosA}

Law of Tangents :-

 \boxed{ \tt \: tan \bigg( \dfrac{B - C}{2} \bigg) = \dfrac{b - c}{b + c} cot\dfrac{A}{2} }

 \boxed{ \tt \: tan \bigg( \dfrac{C - A}{2} \bigg) = \dfrac{c - a}{c + a} cot\dfrac{B}{2} }

 \boxed{ \tt \: tan \bigg( \dfrac{A - B}{2} \bigg) = \dfrac{a - b}{a + b} cot\dfrac{C}{2} }

Attachments:
Similar questions