Math, asked by tanusham2006, 3 months ago

Calculate the perimeter of an equilateral triangle if it inscribes a circle whose area is 154 cm2​

Answers

Answered by srisrilatha057
0

make my answer as brainalist.

Area of the circle = 154 sq cm

⇒\pi r^2 = 154πr

2

=154

⇒ \frac{22}{7} r^2 = 154

7

22

r

2

=154

⇒ r^2 = 49r

2

=49

⇒r = 7 cm

Let the side of the triangle = a cm

So, s = \frac{3a}{2}

2

3a

But the radius of the incircle, r = \frac{\Delta}{s} r=

s

Δ

Where Δ = Area of the triangle and s = semi-perimeter

7 = \frac{ \frac{ \sqrt{3} }{4} a^2 }{ \frac{3a}{2} } 7=

2

3a

4

3

a

2

7 = \frac{ \sqrt{3}a^2 }{2*3a} 7=

2∗3a

3

a

2

7 = \frac{ \sqrt{3}a}{6} 7=

6

3

a

But the radius of the incircle, r = \frac{\Delta}{s} r=

s

Δ

Where Δ = Area of the triangle and s = semi-perimeter

7 = \frac{ \frac{ \sqrt{3} }{4} a^2 }{ \frac{3a}{2} } 7=

2

3a

4

3

a

2

7 = \frac{ \sqrt{3}a^2 }{2*3a} 7=

2∗3a

3

a

2

7 = \frac{ \sqrt{3}a}{6} 7=

6

3

a

Answered by arathim1913
2

Answer:

Answer is 72.66

Hope it helps u ☺☺

Attachments:
Similar questions