Chemistry, asked by intelegence1476, 19 days ago

CALCULATE THE PH OF A 0.01M ETHANOIC ACID SOLUTION

Answers

Answered by shaharbanupp
0

Answer:

The PH of 0.01M concentration of ethanoic acid is 3.37·

Explanation:

Ethanoic acid is a weak electrolyte and its value of the dissociation constant K_{a} is 1.8 × 10^{-5}·

We want to find out the PH at 0.01M concentration of ethanoic acid solution·

The dissociation of ethanoic acid follows ;

                CH_{3} COOH    ⇄   CH_{3}COO^{-}\ \ +\ \ H^{+}

Initially the concentration of

   CH_{3} COOH\ \ =\ \ C

    CH_{3}COO^{-}\ \ =\ \ 0\\ H^{+}\ \ \ \ \ \ \ \ \ \ \ \ \  =\ \ 0

At equilibrium, the concentration of

   CH_{3} COOH\ \ =\ \ C(1-\alpha )\\CH_{3}COO^{-}\ \ =\ \ C\alpha \\ H^{+}\ \ \ \ \ \ \ \ \ \ \ \ \  =\ \ C\alpha

where,

   α   =  degree of dissociation

The dissociation constant for ethanoic acid,

   K_{a}\ \ =\ \ \ \frac{\left[\begin{array}{ccc}CH_{3}COO^{-}  \end{array}\right]\left[\begin{array}{ccc}H^{+}  \end{array}\right] }{\left[\begin{array}{ccc}CH_{3}COOH  \end{array}\right]}

           =\ \ \frac{C\alpha \ *\ C\alpha }{C(1-\alpha )}

           =\ \ \ \frac{C^{2} \alpha ^{2} }{C(1-\alpha )}

1-\alpha is very small, so we can neglect it·

So,

  K_{a}\ \  =\ \ \ \frac{C^{2} \alpha ^{2} }{C}\\

  K_{a}     =\ \ C\alpha ^{2}

ie,

       \alpha \ \ =\ \ \sqrt{\frac{K_{a} }{C} }

⇒    \alpha \ \ =\ \ \sqrt{\frac{1.8\ *\ \ 10^{-5} }{0.01} }

⇒          =\ \ \sqrt{1.8\ \ *\ \ 10^{-3} }

⇒          =\ \ 4.24 × 10^{-2}

So we get the value of α·

To find out the PH we want to know the concentration of H^{+}·

The concentration of H^{+}  can be calculated by

⇒   [H^{+\ } ]\ \ =\ \ C\alpha

⇒               =\ \ 0.01 × 4.24 × 10^{-2}

⇒               =\ \ 4.24 × 10^{-4}M

We know that,

  PH\ \ =\ \ -log[H^{+} ]

ie,

    PH\ \ =\ \ -log[4.24\ *\ 10^{-4}]

⇒  PH       =\ \ 3.37

Similar questions