Physics, asked by riitik8295, 1 year ago

Calculate the population ratio of two states in he - ne laser that produces light of wavelength 6000 å at 300 k

Answers

Answered by branta
81

Answer:

Population ratio is \frac{N_{2} }{N_{1}} =5.94 \times 10^{34}.

Given:

\lambda = 6000 A = 6 ×10^{-7} m

T = 300 K

To find:

Ratio of population = \frac{N_{2} }{N_{1} } = ?

Formula used:

\frac{N_{2} }{N_{1} } = e^{\frac{\Delta E}{kT} }

\Delta E = \frac{hc}{\lambda}

Solution:

Energy is given by,

\Delta E = \frac{hc}{\lambda}

\Delta E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{6 \times 10^{-7} }

\Delta E = 3.315 \times 10^{-19}

\DeltaE = \frac{3.315 \times 10^{-19}}{1.38 \times 10^{-23} \times 300 }

\DeltaE = 80.07

Ratio of population = 1\frac{N_{2} }{N_{1} } =  e^{\frac{\Delta E}{kT} }

\frac{N_{2} }{N_{1}} =5.94 \times 10^{34}

Population ratio is \frac{N_{2} }{N_{1}} =5.94 \times 10^{34}.

Answered by mohakbachchas
10

Answer:

Check Attachment

Explanation:

Attachments:
Similar questions