Math, asked by danielpaulperinchery, 3 months ago

Calculate the possible values of Cosθ if 4cos 2θ+ 2 cosθ+3 = 0​

Answers

Answered by dugeshsingh20
0

Answer:

Hope it helpful to you!!!!!

Attachments:
Answered by kim3527
1
cos2θ = 2*(cos θ)^2 - 1



4*(2*(cos θ)^2 - 1 ) + 2 cosθ + 3 = 0

8(cos θ)^2 - 4 + 2 cosθ + 3 = 0

8(cos θ)^2 + 2 cosθ - 1 = 0

8(cos θ)^2 + 4 cosθ - 2 cosθ - 1 = 0

4 cosθ [ 2cos θ + 1] - [ 2cos θ + 1]= 0

[4 cosθ -1] [ 2cos θ + 1] = 0

Therefore,

[4 cosθ -1] =0 Or [ 2cos θ + 1] = 0


cosθ=1/4 Or cosθ= -1/2



Please mark my answer as brainliest
Similar questions