Chemistry, asked by GGiJORG, 7 months ago

Calculate the potential of the following cell at 298 K. Sn(S)|Sn2+(0.05M)||H+(0.02M)|H2(g)(1bar)|Pt(S) ; E0Sn²⁺/Sn =-0.14V​

Answers

Answered by Anonymous
14

Given :

Reaction :

\sf\:Sn(S)|Sn^{+2}(0.05M)\:||\:H^{+1}(0.02)|H_2(g)(1\:bar)|Pt(s)

To Find

Calculate the potential of the given cell reaction at 298 k. and \sf\:E\degree\:Sn^{+2}/Sn=-0.14

Theory :

•Nernst Equation :

\sf\:E_{cell}=E\degree_{cell}+\dfrac{-2.303RT}{nF}\log\dfrac{[Prduct]}{[Reactant]}

or \sf\:E_{cell}=E\degree_{cell}-\dfrac{0.059}{n}\log\:Q

• E° cell

\sf\:E\degree_{cell}=E\degree_{cathode}-E\degree_{anode}

Solution :

We have , Reaction

\sf\:Sn(S)|Sn^{+2}(0.05M)\:||\:H^{+1}(0.02M)|H_2(g)(1\:bar)|Pt(s)

We know that

\bf\:E\degree_{cell}=E\degree_{cathode}-E\degree_{anode}

\sf\:E\degree_{cell}=0-(-0.14)

\sf\:E\degree_{cell}=0.14V

At Anode :

\sf\:Sn\longrightarrow\:Sn^{+2}+2e^{-1}

At Cathode :

\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_2

Thus, n= 2

Over-all reaction :

\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}

Then ,

\sf\:Q=\dfrac{[Prduct]}{[Reactant]}

\sf\:Q=\dfrac{[Sn^{+2}]}{[H^{+1}]^2}

Given \sf\:[Sn^{+2}]=0.05M\:and\:[H^{+1}]=0.02M

\sf\implies\:Q=\dfrac{0.05}{(0.02)^2}

\sf\implies\:Q=\dfrac{5\times100\times100}{2\times100}

\sf\implies\:Q=250

By Nernst Equation :

\sf\:E_{cell}=E\degree_{cell}-\dfrac{0.09}{n}\log\:Q

\sf\implies\:E_{cell}=0.14-\dfrac{0.059}{2}\log\:250

\sf\implies\:E_{cell}=0.14-\dfrac{0.056}{2}[\log(25\times10)]

\sf\implies\:E_{cell}=0.14-0.03[\log25+\log10]

\sf\implies\:E_{cell}=0.14-0.03[2\log5+\log10]

\sf\implies\:E_{cell}=0.14-0.03[2\times0.69-1]

\sf\implies\:E_{cell}=0.14-0.03[1.38-1]

\sf\implies\:E_{cell}=0.14-0.03[0.38]

\sf\implies\:E_{cell}=0.14-0.0114

\sf\implies\:E_{cell}=0.14-0.0114

\sf\implies\:E_{cell}=0.1286V

Therefore,the potential of the given cell is 0.1286V.


Anonymous: Amazing ♡
Similar questions