Chemistry, asked by Aaravkumar9375, 9 hours ago

Calculate the probability that the speed of a chlorine molecule will lie between200 m s^-1 and 220 ms^-1 at 300 K. Given that mass of chlorine molecule = 70u,kb = 1.38 x 10^-23 JK^-1 and NA = 6.02 x 10^26 kmol^-!.​

Answers

Answered by 787057mainaborah
0

Answer:

heare is your answer please mark me brainlist answer

Explanation:

To be given in question

v_{1}=200meter/secv

1

=200meter/sec

v_{2}=220meter/secv

2

=220meter/sec

M_{cl}=70 amuM

cl

=70amu K_{B}=1.38\times10^{-23}Jule/molK

B

=1.38×10

−23

Jule/mol T=300KT=300K

To be asked in question

Probability speed

We know that

P=[\frac{m}{2\pi K_{B}T}]^\frac{1}{2}e^{-\frac{mv^2}{2K_{B}T}}P=[

2πK

B

T

m

]

2

1

e

2K

B

T

mv

2

P_{1}=[\frac{m}{2\pi K_{B}T}]^\frac{1}{2}e^{-\frac{mv_{1}^2}{2K_{B}T}}P

1

=[

2πK

B

T

m

]

2

1

e

2K

B

T

mv

1

2

Put value

P_{m}=[\frac{m}{2\pi K_{B}T}]^\frac{1}{2}P

m

=[

2πK

B

T

m

]

2

1

P_{m}= [\frac{70 \times 1.67\times10^{-27}}{2\times3.14\times1.38\times10^{-23}\times 300}]^\frac{1}{2}P

m

=[

2×3.14×1.38×10

−23

×300

70×1.67×10

−27

]

2

1

P_{m}=2.12\times10^{-3}P

m

=2.12×10

−3

\frac{mv_{1}^2}{2K_{B}T}=x

2K

B

T

mv

1

2

=x

\frac{mv_{1}^2}{2K_{B}T}=

2K

B

T

mv

1

2

= [\frac{70 \times 1.67\times10^{-27}\times200^2}{2\times1.38\times10^{-23}\times 300}]^\frac{1}{2}[

2×1.38×10

−23

×300

70×1.67×10

−27

×200

2

]

2

1

x=0.564x=0.564

\frac{mv_{2}^2}{2K_{B}T}=y

2K

B

T

mv

2

2

=y

\frac{mv_{2}^2}{2K_{B}T}=

2K

B

T

mv

2

2

= y= [\frac{70 \times 1.67\times10^{-27}\times220^2}{2\times1.38\times10^{-23}\times300}]y=[

2×1.38×10

−23

×300

70×1.67×10

−27

×220

2

]

y=0.6824y=0.6824

First velocity

P_{1} =P_{m}e^{-x}P

1

=P

m

e

−x

Put value

P_{1}=1.206\times10^{-03}P

1

=1.206×10

−03

Second velocity

P_{2} =P_{m}e^{-y}P

2

=P

m

e

−y

Put value

P_{2}=P

2

= 1.071\times10^{-03}1.071×10

−03

Similar questions