Math, asked by muthukumarperu, 11 months ago

calculate the radius of the base of a cylindrical container of volume (220mcube) the height of a cylindrical container is 70m​

Answers

Answered by Anonymous
17

AnswEr :

\bullet\:\sf\ Volume \: of \: container = \bf\ 220m^{3}

\bullet\:\sf\ Height \: of \: container = \bf\ 70m

\bullet\:\sf\ We \: have \: to \: find \: \bf\ radius \: of \: base

★ Simply, block the Available values(i.e. Height, Volume) to get the Radius in appropriate Formula.

 \rule{170}2

\underline{\textrm{According \: to \: given \: in \: question:}}

\normalsize\star\: \:\blue{\boxed{\sf \pink{Volume \: of \: Cylinder = \pi r^2h}}}

\normalsize\twoheadrightarrow\sf\ 220 = \frac{22}{7} \times\ (r)^{2} \times\ 70

\normalsize\twoheadrightarrow\sf\ 220 = \frac{22}{\cancel{7}} \times\ (r)^{2} \times\ \cancel{70}

\normalsize\twoheadrightarrow\sf\ 220 =  22\times\ (r)^{2} \times\ 10

\normalsize\twoheadrightarrow\sf\  220 = 220 \times\ (r)^{2}

\normalsize\twoheadrightarrow\sf\ r^{2}  = \frac{\cancel{220}}{\cancel{220}}

\normalsize\twoheadrightarrow\sf\ (r)^{2} = 1

\normalsize\twoheadrightarrow\sf\ r = \sqrt{1}

\normalsize\twoheadrightarrow\sf\ r = 1

\therefore\:\underline{\textsf{Hence, \: the \: radius \: of \: container \: is}{\textbf{\: 1cm}}}

Answered by Anonymous
37

Answer:

★ Radius is 1 cm ★

Step-by-step explanation:

Given:

  • Volume of cylindrical container is 220 cm³
  • Height of cylindrical container is 70 m

To Find :

  • Radius of base of cylindrical container

Solution:

Volume of cylinder= πr²h

\small\implies{\sf } 220 = πr²h

\small\implies{\sf } 220 = 22/7 x (r)² x 70

\small\implies{\sf } 220 = 1540/7 x (r)²

\small\implies{\sf } 220 = 220 x (r)²

\small\implies{\sf } 220/220 =

\small\implies{\sf } 1 =

\small\implies{\sf } 1 = r

\small\implies{\sf } 1 cm = Radius

Hence, Base of radius of cylindrical container is 1 cm

Similar questions