Chemistry, asked by bhatnagarmanasvi20, 6 months ago

calculate the ratio of molecules present in 44 g of carbon-dioxide and 16 g of SO2​

Answers

Answered by Atαrαh
2

Solution :-

Carbon dioxide :-

  • Mass of CO 2 = 44 g
  • Molar mass of CO 2 = 44 g

Calculation :-

  • Molar mass of CO 2 = C + 2(O) = 12+ 32 = 44 g

we know that ,

\bigstar \boxed{\mathtt{ moles= \dfrac{mass}{molar mass} = \dfrac{Molecules  }{6.023  \times  {10}^{23} }}}

hence ,

\implies  \mathtt{ \dfrac{mass_{CO_2}}{molar \:  mass_{CO_2}} = \dfrac{Molecules \:  of \:  CO_2 }{6.023  \times  {10}^{23} }}

\implies \mathtt{   Molecules \:  of \:  CO_2 =\dfrac{mass_{CO_2}}{molar  \: mass_{CO_2}} \times  6.023  \times  {10}^{23} }

\implies \mathtt{   Molecules  \: of  \: CO_2 =\dfrac{44}{44} \times  6.023  \times  {10}^{23} }

\implies \mathtt{   Molecules  \: of \:  CO_2 = 6.023  \times  {10}^{23} }

Sulphur dioxide :-

  • Mass of SO 2 = 16 g
  • Molar mass of SO 2 = 64 g

Calculation :-

Molar mass of SO 2 = S + 2(O) = 32+ 32 = 64 g

we know that ,

\implies  \mathtt{ \dfrac{mass_{SO_2}}{molar \:  mass_{SO_2}} = \dfrac{Molecules \:  of \:  SO_2 }{6.023  \times  {10}^{23} }}

\implies \mathtt{   Molecules \:  of \:  SO_2 =\dfrac{mass_{SO_2}}{molar  \: mass_{SO_2}} \times  6.023  \times  {10}^{23} }

\implies \mathtt{   Molecules  \: of  \: SO_2 =\dfrac{16}{64} \times  6.023  \times  {10}^{23} }

\implies \mathtt{   Molecules  \: of  \: SO_2 =\dfrac{1}{4} \times  6.023  \times  {10}^{23} }

\implies \mathtt{   Molecules  \: of  \: SO_2 =1.505\times  {10}^{23} }

Ratio of the molecules of CO 2 and SO 2 :-

 \implies\mathtt{\dfrac{Molecules \:  of \:  CO_2}{Molecule s \:  of  \: SO_2} =  \dfrac{6.023 \times  {10}^{23} }{1.505 \times  {10}^{23} } }

 \implies \boxed{\mathtt{\dfrac{Molecules \:  of \:  CO_2}{Molecule s \:  of  \: SO_2} =4}}

Similar questions