Physics, asked by Anonymous, 11 months ago

Calculate the resistivity of the material of a wire 1.0m long, 0.4mm in diameter and

having a resistance of 2.0 ohm​

Answers

Answered by TheBrainlyWizard
96

\bf{\underline{\underline{Given}}}

\mathsf{\star\: \: Length\: (L) = 1\:m}\\ \\

\mathsf{\star\: \: Diameter\: (d) = 0.4\:mm}\\ \\

\mathsf{\star\: \: Radius\: (r) = \frac{d}{2}}\\ \\

\mathsf{\implies\: r = \frac{0.4}{2}\: mm}\\

\mathsf{\implies\: r = 0.2\: mm}\\

\fbox{\mathtt{\red{1\:mm = 10^{-3}\:m}}}\\

\mathsf{\implies\: r = 0.2 × 10^{-3} \: m}\\ \\

\mathsf{\star\: \: Resistance\: (R) = 2\:Ω}\\ \\

\bf{\underline{\underline{To\:find}}}

\mathsf{\star\: \: Resistivity \:of \:the\: wire\: ( \rho ) }\\ \\

\bf{\underline{\underline{Solution}}}\\

\fbox{\mathtt{\blue{ Area\: _{wire} = \pi × r^{2}}}}\\

\mathtt{\implies\: A = 3.14 × (0.2 × 10^{-3})^{2}}\\

\mathtt{\implies\: A = 3.14 × 0.2 × 10^{-3} × 0.2 × 10^{-3}}\\

\mathtt{\implies\: A = 3.14 × 0.04 × 10^{-6}}\\

\mathtt{\implies\: A = 0.1256 × 10^{-6}}\\

\mathtt{\implies\: A = 125.6 × 10^{-3} \: \:m^{2}}\\ \\

We know that

\fbox{\mathsf{\red{Resistance \: (R) = \rho \frac{L}{A}}}}\\

\mathtt{\implies\: \rho = \frac{R × A}{L}}\\

\mathtt{\implies\: \rho = \frac{2\:Ω × 125.6 × 10^{-3} \: m^{\cancel{2}}}{1\: \cancel{m}}}\\

\fbox{\mathtt{\green{ \: \rho = 251.2 × 10^{-3} \: Ω \: m} \:\:(Answer)}}\\

Answered by akbarhussain26
2

Answer:

Resistance=2 ohm

Length=1m

Diameter=4 mm =4/1000=0.004m

Radius=diameter/2=0.004/2=0.002m

Resistance = resistivity×length/area

2 = resistivity×1/0.002

2×2/1000=resistivity

4/1000=resistivity

0.004= resistivity

Similar questions