Calculate the shortest and the longest wavelengths of the Lyman series. Given Rydberg constant=10967700 1\m
Answers
Answer:
Shortest = 911.75 Å, Longest = 1215.67 Å
Explanation:
Rh = 10967700 m⁻¹ ⇒ 109678 cm⁻¹
1/λ = Rh [1/n₁² + 1/n₂²]
In Lyman series n₁ = 1 and for shortest wavelength energy difference in transitional states will be maximum. So n₂ = ∞
1/λ = 109678 [1/1² - 1/∞²]
1/λ = 109678 [1+0]
λ = 1/109678
λ = 9.117598x10⁻⁶ cm
λ = 911.75Å
for the longest wavelength energy difference will be minimum. So n₂ = 2
1/λ = 109678 [1/1² - 1/2²]
1/λ = 109678 (3/4)
λ = 4/(3x109678)
λ = 12.1567x10⁻⁶ cm
λ = 1215.67Å
Answer:
Shortest = 911.75 Å, Longest = 1215.67 Å
Explanation:
Rh = 10967700 m⁻¹ ⇒ 109678 cm⁻¹
1/λ = Rh [1/n₁² + 1/n₂²]
In Lyman series n₁ = 1 and for shortest wavelength energy difference in transitional states will be maximum. So n₂ = ∞
1/λ = 109678 [1/1² - 1/∞²]
1/λ = 109678 [1+0]
λ = 1/109678
λ = 9.117598x10⁻⁶ cm
λ = 911.75Å
for the longest wavelength energy difference will be minimum. So n₂ = 2
1/λ = 109678 [1/1² - 1/2²]
1/λ = 109678 (3/4)
λ = 4/(3x109678)
λ = 12.1567x10⁻⁶ cm
λ = 1215.67Å
: