Math, asked by alekd, 5 hours ago

Calculate the size of angel X you must show all you working out!

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Given- }}

Points B, C, D lie on a straight line.

AC is perpendicular to BD.

BC = 6 cm, BD = 22 cm

Area of triangle ABC is 42 square cm.

 \green{\large\underline{\sf{To\:Find - }}}

The value of angle x

 \red{\large\underline{\sf{Solution-}}}

Given that,

  • AC is perpendicular to BD

  • BC = 6 cm

  • Area of triangle ABC = 42 square cm.

We know

\red{\rm :\longmapsto\:Area_{\triangle ABC} = \dfrac{1}{2} \times BC \times AC}

\red{\rm :\longmapsto\:42 = \dfrac{1}{2} \times  6 \times AC}

\red{\rm :\longmapsto\:42 = 3 \times AC}

\red{\rm :\longmapsto\: AC = 14 \: cm}

Now, Consider

\rm :\longmapsto\:BD = BC + AD

\rm :\longmapsto\:22 = 6 + AD

\rm :\longmapsto\:22 - 6 = AD

\rm :\longmapsto\:AD = 16 \: cm

\rm :\longmapsto\:In \: right \:  \triangle  \: ADC

Using Trigonometric ratios, we have

\rm :\longmapsto\:tanx = \dfrac{AC}{AD}

\rm :\longmapsto\:tanx = \dfrac{14}{16}

\rm :\longmapsto\:tanx = \dfrac{7}{8}

\rm :\longmapsto\:tanx = 0.875

\rm :\longmapsto\:x = 41 \degree \: 12' \: approx

\bf\implies \:x = 41.20 \degree \: approx.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Similar questions