Math, asked by 7cvaishnavisharma, 4 months ago

calculate the size of each lettered angle in the following figures. ( Please ignore the pencil working that my teacher made me write) ​

Attachments:

Answers

Answered by supriya9060
0

Answer:

x=93° (by linear pair)

z=33°(by linear pair and angle sum property of a triangle)

y=33°(by linear pair and then angle sum property of a triangle)

Hope this helps..

Answered by Anonymous
3

Answer:

I have given Naming in Attachment

Line ACB and Line ACE ( X ) formed a linear pair

So,

\implies acb + ace =  {180}^{0}

\implies  {87}^{0}  + x =  {180}^{0}

\implies x =  {180}^{0} -  {87}^{0}

\implies x =  {93}^{0}

≻────────────────────⋆✩⋆────────────────────≺

Line ABD and Line ABC formed a Linear Pair

So,

\implies abd + abc =  {180}^{0}

\implies  abd +  {75}^{0} =  {180}^{0}

\implies abd =  {180}^{0}  -  {75}^{0}

\implies abd =  {105}^{0}

≻────────────────────⋆✩⋆────────────────────≺

Line AEF and Line AEC formed a Linear Pair

So,

\implies aef + aec =  {180}^{0}

\implies  {126}^{0}  + aec =  {180}^{0}

\implies aec =  {180}^{0}  -  {126}^{0}

\implies aec =  {54}^{0}

≻────────────────────⋆✩⋆────────────────────≺

By Angle Sum Property ,

\implies aec + ace + cae(y) =  {180}^{0}

\implies  {54}^{0}  +  {93}^{0}  + y =  {180}^{0}

\implies  {147}^{0}  + y =  {180}^{0}

\implies y =  {180}^{0}  -  {147}^{0}

\implies y =  {33}^{0}

≻────────────────────⋆✩⋆────────────────────≺

By Angle Sum Property ,

\implies bad(z) + abd + adb =  {180}^{0}

\implies z +   {105}^{0}   +  {42}^{0}  =  {180}^{0}

\implies z +  {147}^{0}  =  {180}^{0}

\implies z =  {180}^{0}  -  {147}^{0}

\implies z =  {33}^{0}

Hence ,

Value of X = 93°

Value of Y = 33°

Value of Z = 33°

HØPÈ ÏT HÊLPS ♠♦♠

Attachments:
Similar questions