Physics, asked by Saifßàã, 1 year ago

Calculate the surface energy released if eight small drops of water each of radius 6cm combines to from a big drop? plzz do fast....frnd..

Answers

Answered by silentlover45
10

\large\underline\mathrm\red{Solution}

  • Let r and R be the radius of small drop and big drop respectively then as the volume remains constant,

\large\mathrm{4/3 \:\:π\: R³ \:\: = \:\: n 4/3 \:\: πr³. \:\:\:\:\:} \large\mathrm\blue{( R \:\: = \:\:\: n^1/3 r.)}

\large\mathrm{Total \: surface \: area \: of \: small \: drops \: = \: 4πr²\: n}

\large\mathrm\red{And}

\large\mathrm{Surface \: area \: of \: big \: drop \: = \: 4πR²}

\large\mathrm\red{Total \: release \: of \: surface \: energy}

\implies [4πr²n - 4πR²]

\implies 4π[r²n - n^2/3.r2]T

\implies 4πr²[n - n^2/3]

\implies 4πr²[8 - (2³)²/³]T

\implies 4πr²[8 - 4]T

\implies 16πr²T.

\large\underline\mathrm\red{Note}

\large\mathrm\red{(1)}. Release of surface energy if small drops combine to form a a single big drop. \implies 4πr²[n - n²/³]T

\large\mathrm\red{(2)}. For soap bubble; energy released when small bubbles combine to form a big bubble.

\implies 2 × 4πr²[n - n²/³]T

\large\mathrm{When \: n =  \: No. \: of \: small \: drops}

\large\mathrm{r \: = \: radius \: of \: small \: drops.}

__________________________________

Similar questions