Physics, asked by mary3770, 10 months ago

Calculate the torque on the square plate of the previous problem if it rotates about a diagonal with the same angular acceleration.

Answers

Answered by Anonymous
1

the torque on the square plate of the previous problem if it rotates about a diagonal with the same angular accelerCalculate the torque on the square plate of the previous problem if it rotates about a diagonal with the same angular acceleration.ation.Calculate the torque on the square plate of the previous problem if it rotates about a diagonal with the same angular acceleration.Calculate the torque on the square plate of the previous problem if it rotates about a Calculate the torque on the square plate of the previous proCalculate the torque on the square plate of the previous problem if it rotates about a diagonal with the same angular acceleration.blem if it rotates about a diagonal with the same angular acceleration. with the same angular acceleration.

Answered by bhuvna789456
0

The torque on the square plate is 5 \times 10^{-6} N.m.

Explanation:

Step 1:

Given values in the question :

           α  is Angular acceleration

           M is the mass

                      α = 0.20

                      M = 120 g  

Converting mass from gram to kilogram  :

                     M=\frac{120}{1000}=0.12 \mathrm{kg}  

                    Edge a = 5.0 cm

Converting from centimeter to meter  :

                   a=\frac{5}{100}=0.05 \mathrm{m}

Step 2:

Moment of plate inertia when the line goes through the center and parallel to the edge,

                       \mathrm{I}=\frac{\mathrm{ma}^{2}}{12}

Torque now (plate)

Step 3:

               T = Iα

                  =\frac{m a^{2}}{12} \times 0.20 \ (\alpha=0.20)

                  =\frac{0.12 \times 0.05^{2}}{12} \times 0.20

                  =\frac{0.12 \times 2.5 \times 10^{-3}}{12} \times 0.20

                 =\frac{3 \times 10^{-4}}{12} \times 0.20

                 =2.5 \times 10^{-5} \times 0.20

                 =5 \times 10^{-6} \mathrm{N} \cdot \mathrm{m}

Thus, the torque on the square plate is, T =5 \times 10^{-6} \mathrm{N} \cdot \mathrm{m}.

Similar questions