Math, asked by arun54220, 5 months ago

Calculate the total surface area and curved surface area of cone if slant height of that is 56 m and radius is 49m.​

Answers

Answered by madmanmaharana80
0

Answer:

We know that formula of the curved surface area of a cone is πrl, where r is the base radius and l is the slant height of the cone.

Here, given the base radius, r=5.6cm

slant height, l=9cm

∴ Curved surface area of the cone= πrl

=

7

22

×5.6×9

=

7

1108.8

=158.8cm

2

.

Answered by Anonymous
0

\large{\red{\bold{\underline{Given:}}}}

 \sf \: (i) \: Slant \: height \: of \: the \: cone (l) = 56m \\  \\  \sf \: (ii) \: Radius \: of \: its \: base(r) = 49m

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cone \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cone

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total  \: surface \:  area = \pi rl + \pi {r}^{2} \\  \\  \sf \: Curved \:  surface \:  area = \pi rl

\large{\red{\bold{\underline{Solution:}}}}

 \sf \: Let's \: consider \: total \: surface \: area \: as \: T.S.A. \\ \sf \: And \: curved \: surface \: area \: as \: C.S.A.

\large{\pink{\bold{\underline{Then:}}}}

 \sf \:  \longrightarrow \: T.S.A = \pi r(r + l) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 49(49 + 56) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{7}  \times 49(105) \\  \\  \longrightarrow \: \sf \: T.S.A =  \frac{22}{\cancel7}  \times \cancel49 (105) \\  \\ \longrightarrow \: \sf \:T.S.A = 22 \times 7 \times 105 \\  \\ \longrightarrow \: \sf \:T.S.A = 16170 \:  {m}^{2}

\large{\green{\bold{\underline{And:}}}}

 \sf  \longrightarrow \: \sf \: C.S.A = \pi rl \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{7} \times 49 \times 56 \\  \\ \longrightarrow \: \sf \: C.S.A =  \frac{22}{\cancel7} \times \cancel49 \times 56 \\  \\ \longrightarrow \: \sf \: C.S.A = 22 \times 7 \times 56 \\  \\ \longrightarrow \: \sf \: C.S.A = 8624 \:  {m}^{2}

\large{\red{\bold{\underline{Therefore:}}}}

 \sf \: Total \: surface \: area \: of \: cone \: is \: 16170 {m}^{2} \: and \\ \sf \: curved \: surface \: area \: of \: cone \: is \: 8624 {m}^{2}.

Similar questions